
EDITORIAL

Infections and infectious dis­
eases remain a leading cause 
of morbidity and mortal­
ity worldwide. Sepsis claims 
10  000 lives globally every 

day.[1] Antimicrobials, a major weapon in our 
armamentarium to combat infections, are 
arguably the most poorly prescribed of all 
medications. Antibiotics represent at least 
30% of acute care hospitals’ drug expendi­
ture. They are prescribed to 20 - 50% of inpa­
tients and to a greater extent in intensive care 
unit (ICU) patients. Of note they are prone to 
misuse, with 22 - 65% of prescriptions either 
not indicated or inadequate to treat the infec­
tion.[2,3,4] The consequences of this misuse are 
unnecessary costs and side-effects, resistant 
micro-organisms and failure of treatment.[2,5,6] 
The Prevalence of Infection in South Africa 
(PISA) study, which evaluated antimicrobial 
prescription practices at specialist and super-
specialist level in state/academic and the pri­
vate sectors among critically ill patients in 
South Africa (SA), revealed startling results – 
approximately 80% of such patients were 
receiving antimicrobial therapy, the appropri­
ate choice of antimicrobial occurred in just 
over 40% of patients, antibiotics were modi­
fied appropriately in just over 10% of patients, 
and the duration of therapy was appropriate 
in just over a quarter of the patients.[3]

A recent commentary aptly suggested 
that the major reason that antibiotics are 
prescribed inappropriately is that there is a 
lack of knowledge about infectious diseases 
and antimicrobial therapy, and health 
care providers are afraid not to prescribe 
antibiotics.[7] This is particularly true in the 
critical care setting, where antimicrobial 
management represents an ongoing challenge.

Critically ill patients constitute a unique 
population and differ from the non-critically 
ill in terms of antibiotic administration and 
dosing. A greater understanding of antibiotic 
dosing in these patients is essential for all 
involved in their care. This editorial aims to 
focus on some of the important principles and 
strategies aimed at optimising antimicrobial 
use among critically ill patients.

In a recent study measuring serum 
β-lactam antibiotic concentrations in patients 
in the ICU, it was found that almost three-
quarters of antibiotic prescriptions needed 
to be altered to achieve therapeutic targets 
(plasma concentrations too low) without 
toxicity (plasma concentrations too high).[8]

The reason for the inaccuracy of a ‘one 
size fits all’ dosing in the ICU, apart from 

patients’ weights, involves the distinct patho­
physiological changes that occur in ICU 
patients and their management. The main 
alterations in this regard relating to antibiotic 
concentrations are: (i) increased volume of 
distribution of drugs; (ii) increased cardiac 
output; (iii) increased hepatic and renal 
blood flow (and hence increased metabolism 
and excretion); and (iv) low serum protein 
levels, and hence altered protein binding of 
drugs (Fig. 1).[9,10] These changes often lead 
to subtherapeutic concentrations. This may 
be further compounded by the fact that ICU 
patients frequently have renal dysfunction 
and require renal replacement therapies 
(RRTs), which further complicates the 
resultant serum antibiotic concentration(s). 
Depending on the dose prescribed of both 
drug and RRT, there could potentially be 
under- or over-dosing.[8]

Patients with sepsis tend to need, and to 
be given, fluid in the initial resuscitative 
phase of the disease. Leaky capillaries, 
often compounded by hypoproteinaemia, 
predispose these patients to extravascular 
fluid extravasation. This will have little effect 
on lipophilic agents (e.g. fluoroquinolones) 
as their typical volume of distribution (Vd; 
the space into which the drug diffuses) is 
very large, and the relative increase in Vd 
too small to produce an overall Vd change. [11] 
Hydrophilic antibiotics, which primarily 
occupy the intravascular space, will also 
distribute into this increased extravascular 
water, and due to a relatively small initial 
Vd, this increase will produce a markedly 
large change (increase) in the Vd of such 
antibiotics. This increased Vd means that 
administering the same dose of a hydrophilic 

antibiotic to a patient with leaky capillaries 
will result in a lower concentration of the 
antibiotic in the serum, and particularly 
a lower maximal concentration. Marik[12] 
demonstrated that the sicker the patient (and 
the higher the APACHE II score), the larger 
the Vd of amikacin. This phenomenon (i.e. 
increased Vd, needing larger doses for the 
same serum concentration in critically ill 
patients) has been validated by others.

Practical implications for dosing. As first 
dose give a large, loading dose of antibiotic, 
particularly those with hydrophilic tend­
encies (aminoglycosides, glycopeptides, 
β-lactams and colistin.) Remember this is 
independent of altered clearances (i.e. renal 
dysfunction) (Fig. 2).

Di Giantomasso et al.[13] have demon­
strated an increased organ blood flow early 
in sepsis. Clinically this means that in 
the presence of normal renal function, an 
increased renal blood flow will translate into 
an increased glomerular filtration rate and 
hence an increased creatinine clearance. This 
clinical phenomenon has now been termed 
augmented renal clearance (ARC).[14] In such 
circumstances all renally eliminated drugs 
will have increased clearances. ARC has 
now been documented in >60% of patients 
with ‘normal’ serum creatinine admitted 
to multidisciplinary ICUs.[15] The practical 
implication is that with standard dosing, 
ARC results in subtherapeutic concentrations 
of drugs that have renal elimination (unless 
higher doses are administered) (Fig. 1).

Practical implications for dosing. Younger 
patients without renal dysfunction often 
manifest ARC and hence clear renally eliminated 
drugs quickly. Shorten the dosing interval, e.g. 

Antibiotic administration in the critically ill –  
in need of intensive care!
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Fig. 1. Pathophysiological changes of sepsis affecting antibiotic concentrations. (Vd = volume of 
distribution; CL = clearance.)
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instead of daily aminoglycosides use 18-hourly; 
instead of a bi-daily dose of β-lactam administer 
same dose 8-hourly. Increased total daily dose 
(aminoglycosides, glycopeptides, β-lactams), 
extended infusions (β-lactams) and therapeutic 
drug monitoring (TDM) may also be employed.

Highly protein-bound drugs are usually kept 
within the vascular compartment owing to 
the size of the protein-drug complex. In such 
circumstances, and depending on a number of 
other factors, there is usually a small amount of 
circulating drug that is not protein bound. This 
component (free drug, f) represents the active 
constituent of the drug and crosses various 
membranes such as vascular, kidney and 
meninges. Protein binding of <70% is usually 
of little clinical consequence, but commonly 
used antibiotics such as ertapenem, teicoplanin, 
ceftriaxone, flucloxacillin and daptomycin are 
highly protein bound (>80% protein binding).

In a pragmatic trial of 7 000 adult patients 
requiring fluid resuscitation who were admit­
ted to ICUs in Australia and New Zealand, 40% 
of patients arrived in the ICU with albumin 
concentrations of ≤25  g/L.[16] As albumin is 
the primary binding site for most drugs, if 
hypoalbuminaemic patients are administered 
highly protein-bound drugs, there will initially 
be a much higher than normal f. If the drug 
is renally excreted and the patient has normal 
or near normal renal function, this high free 
fraction will soon pass through the kidney (via 
glomerular filtration) and be eliminated from 
the body at a rate much higher than occurs with 
the ‘normal’ high protein binding.[17] In such 
circumstances the half-life of these drugs is 
much shorter than expected. Clinically this has 
the effect of shortening the duration of action of 

these drugs. ARC further exaggerates this effect 
in that the antibiotic half-life and duration of 
action are even shorter (Fig. 1).

Practical implications for dosing. For highly 
protein-bound drugs in the ICU, shorten 
the frequency of dosing, e.g. instead of daily 
ceftriaxone administer a bi-daily dose; similarly 
for ertapenem, teicoplanin and daptomycin, 
higher than ‘standard’ doses are suggested. 
Larger loading doses (aminoglycosides, 
glycopeptides, β-lactams), extended infusions 
(β-lactams) and TDM may also be employed.

For renally eliminated antibiotics there are 
reasonably good texts for dosage adjustments 
in patients with renal dysfunction, and to a 
lesser extent this is also the case with hepatic 
dysfunction. RRT alters clearances markedly, 
and this complicates dosage administration 
enormously.[18-23] ICUs order their RRT 
modalities differently (CVVH, CVVHD, 
CVVHDF, SLEDD) and even the settings 
within these modalities differ (predilution, 
post-dilution, dialysate rates). Clearances of 
urea, creatinine, fluids and in fact medium 
and small molecules all vary in these different 
modalities. It is therefore not surprising that 
clearances of the unbound component of 
antibiotics will differ accordingly. In the 
clinical scenario a prescription of continuous 
RRT does not necessarily imply a 24-hour 
clearance time, as there is often ‘downtime’ 
of such artificial kidneys relating to entities 
such as kidney clotting and set-up times 
for new circuits. This complicates the 
clinical clearances even further (Fig. 1). It 
is for this reason that some units routinely 
employ TDM to prescribe antibiotics more 
accurately, including β-lactam TDM.[1,24,25,26] 

This is standard practice, for example, at the 
Royal Brisbane and Women’s Hospital.

Practical implications for dosing. Search for 
an article measuring antibiotic concentrations 
with the RRT settings most similar to your 
own and use this article to adjust your dos­
ing, or ask your laboratory to set up β-lactam 
TDM. Note too that if continuous RRT filter 
downtime is prolonged (nurses busy, long 
set-up time) clearances will be far less than 
continuous 24-hour continuous RRT.

There is a global problem of increasing anti­
biotic resistance, with the minimum inhibitory 
concentration (MIC) of many organisms rising. 
While it is beyond the scope of this editorial to 
address single or double Gram-negative anti­
biotic cover, or how to deal with increasing 
resistance patterns optimally, it is important 
to recognise that increasing the dose of some 
antibiotics can overcome rising MICs.

How to deliver β-lactam antibiotics 
optimally has received much attention in 
recent literature (i.e. via a bolus or prolonged 
infusions, be they continuous infusion or 
extended infusions). There is some emerging 
evidence that delivery of β-lactam antibiotics 
may be further enhanced by administration as 
a prolonged infusion.[27,28] Where continuous 
infusions are employed, an initial bolus dose 
should be given prior to the initiation of the 
infusion. It should be noted that, to date, 
continuous infusions have not been shown 
to improve clinical outcomes. Our personal 
advice is to use extended infusions.

Finally, we would like to conclude by 
addressing the issue of β-lactam TDM. 
TDM in general can be used to prevent 
toxicity or improve efficacy. Measurement 
of aminoglycoside and vancomycin serum 
concentrations, which are generally 
universally available, usually fall into the 
former category. As β-lactams have a high 
therapeutic range with infrequent toxicity, 
it was conventionally deemed that TDM of 
these drugs was unnecessary. More recently 
we have realised how we have been under-
dosing such drugs, and the need for TDM of 
these antibiotics has come to the fore.[1,24,25,26]

A better understanding of antibiotic 
dosing in the critically ill will go a long way to 
enhancing the longevity of what is becoming an 
increasingly scarce resource. There are no new 
antibiotic classes nearing clinical production. 
We believe that correct antibiotic dosing will 
limit the increasing burden of antimicrobial 
resistance, minimise therapeutic failures and, 
most importantly, improve patient outcomes.

M Mer
Divisions of Critical Care and Pulmonology, 
Department of Medicine, Faculty of Health 
Sciences, University of the Witwatersrand, 
Johannesburg, South Africa

Fig. 2. Loading doses should be thought of as independent of maintenance dosing. (Vd = volume of 
distribution.)
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