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The South African Medical Research Council Centre for Tuberculosis Research has a rich history of high-impact research that has 
influenced our understating of this hyper-epidemic which is further exacerbated by the emergence and spread of drug-resistant forms of the 
disease. This review aims to summarise the past 30 years of research conducted in the Centre which has influenced the way that tuberculosis 
(TB) is diagnosed and treated. The review includes the development of new technologies for rapid screening of people with probable TB 
and the repurposing of human diagnostics for wildlife conservation.
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In April 1993, the World Health Organization (WHO) declared 
tuberculosis (TB) a global emergency.[1] In 1996, the South African 
National Department of Health declared TB a national emergency 
and TB treatment became a national priority.[2,3] It was clear to us 
that inadequate attention was being given to this disease, which 
included inadequate tools to diagnose and treat the problem. The 
Centre for Tuberculosis Research (CTR) (Table 1) therefore sought 
to embark on the active development of novel methods for the 
diagnosis and genotypic characterisation of the causative agent, 
Mycobacterium tuberculosis. This programme led to the birth of the 
science of molecular epidemiology,[4,5] which allowed tracking of the 
strains through DNA fingerprinting[6,7] (Fig. 2), spoligotyping[8-10] 
and mycobacterial interspersed repetitive units variable number of 
tandem repeat (MIRU-VNTR) typing.[11] This was also an era of gene 
discovery, which provided new insights into the mechanisms of drug 
resistance.[12,13] The CTR used these methods to challenge established 
dogmas,[14] such as whether reinfection occurs,[15] whether primary 
infection with a drug-resistant strain occurs[16,17] and whether mixed 
or multiple infection occurs.[18,19] For example, our findings that 
reinfection and multiple infection are common in TB, prompted 
much discussion and thinking, with broad implications ranging from 
vaccine use to diagnostics, antibiotic usage and preventive therapy.

Diagnostics targeting Mycobacterium tuberculosis
In the late 1980s, scientists at the CTR recognised the importance 
of the polymerase chain reaction (PCR) as a potential diagnostic 
technique. In order to use this technology, the CTR built the first-
ever automated PCR machine in Africa. Subsequently, the technology 
was used to develop an assay to detect resistance-associated genetic 
mutations to first-line anti-TB drugs.[59] This research introduced 
clinicians and scientists in Africa to the concept of genetic drug 
susceptibility testing (gDST). The recent commercialisation of this 
technique by various diagnostic companies enabled these assays 
to form an important component of the diagnostic algorithm.[60] 
The CTR has been involved in testing these assays; for example, in 
collaboration with the National Health Laboratory Service (NHLS), 
the CTR evaluated the GenoType MTBDRsl assay, demonstrating 

excellent sensitivity and specificity for diagnosis of TB and even 
fluoroquinolone and aminoglycoside resistance,[61,62] which has now 
been implemented into routine care. To simplify the interpretation 
of GenoType assays, a FluoroType assay based on linear-after-the-
exponential (LATE)-PCR and Lights-On and Lights-Off technology, 
was developed by the CTR in collaboration with Professor Wangh[63] 

Table 1. History of the SAMRC Centre for Tuberculosis 
Research
The beginnings of the Centre for Tuberculosis Research in fact 
predate the MRC. In 1957, the Faculty of Medicine and Health 
Sciences (FMHS) of Stellenbosch University began operating out 
of premises at Karl Bremer Hospital. Around 1960, a Council for 
Scientific and Industrial Research Degenerative Diseases Group 
under the directorship of Professor Andries Brink, later to be the 
first president of the MRC and second dean of the FMHS, was 
started. The MRC was established in July 1969 and the group was 
transferred and renamed the MRC Unit for Molecular and Cellular 
Cardiology. In 1970, the Unit moved to new premises in the FMHS 
within the Department of Internal Medicine. In 1972, the Unit 
moved to the FISAN building and from 1974 was hosted in a new 
Department of Medical Biochemistry, both headed by Professor 
Wieland Gevers. In 1977, Professor Gevers moved to the University 
of Cape Town and the directorship of the Unit was passed on 
to Professor Andre Bester. The Unit became the Centre for 
Molecular and Cellular Biology with a broader mandate in 1988. 
In 1990, Professor Paul van Helden became director of the MRC 
Centre, and in 2014 the Centre became known as the SAMRC 
Centre for Tuberculosis Research (CTR) with a clear mandate 
to focus efforts on TB. Professor van Helden retired in 2016 and 
Professor Rob Warren is the current unit director. Over the past 
30 years, the research conducted in the CTR has significantly 
influenced understanding of the epidemiology of tuberculosis 
disease, development of new diagnostics, provided new insight into 
biomarkers of disease, and translated human diagnostics for wild-
life conservation (Fig. 1)
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─ Use of PCR for TB diagnosis[20] 

─ Recurrent disease by reinfection[17] 

─ Association between TB and a polymorphic NF-κB binding site in the IFNγ gene[21] 
─ Transmission occurs in community: Adult-to-child[22] and adult-to-adult TB[23] 

─ Rate of reinfection higher after successful treatment[24] 
─ BCG vaccine induces disease in HIV-infected children[25] 
─ Promoter variation in the DC-SIGN-encoding gene CD209 is associated with TB[26] 
─ Vitamin D receptor gene polymorphisms and sputum conversion time in pulmonary TB patients[27] 
─ Evaluation of adapted whole-blood IGRA for the diagnosis of pleural TB[28] 
─ EBA and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary TB[29] 
─ Host markers in QuantiFERON supernatants differentiate active TB from latent TB infection[30] 
─ Clinical relevance of mycobacterial pharmacogenetics[31] 
─ Patent: Discovery of new host markers enabling differentiation between active TB and LTBI[32] 

─ EBA and pharmacokinetics of PA-824 in smear-positive TB patients[33] 
─ Xpert MTB/RIF rapid diagnosis of lymphadenitis[34] 
─ Impact of age and sex on mycobacterial immunity in an area of high TB incidence[35] 
─ QuantiFERON-TB Gold (In-Tube) assay modification  for M. bovis diagnosis in African buffaloes[36] 
─ 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations[37] 
─ Genotype MTBDRsl shortens time to XDR-TB diagnosis[38] 
─ M. tuberculosis population structure determines outcome of genetic DST[39] 
─ Potential of novel M. tuberculosis infection phase-dependent antigens in the diagnosis of TB in a high-burden 

setting[40] 

─ Programmatic selection drives XDR-TB evolution[41] 
─ M. suricattae[42]

─ TB at the human-livestock-wildlife interface[43] 
─ TNF1 controls BCG-triggered TNF production by leukocytes in an area hyperendemic for TB[44] 
─ MDR-TB and culture conversion with bedaquiline[45] 
─ Diagnostic accuracy of MTBDRsl[46] 
─ Associations between human leukocyte antigen class I variants and the M. tuberculosis subtypes causing disease[47] 

─ Serum and plasma biomarkers translated into a finger-prick screening test for TB[48] 
─ Use of PET-CT as a treatment response monitoring tool[49] 
─ Clinical trial: Biomarkers as tools to identify patients eligible for shorter TB treatment duration[50] 
─ Novel MAP3K14 mutation in recessive atypical combined immunodeficiency[51] 
─ Immune responses to experimental M. bovis infection in the white rhino[52] 
─ Detecting micro-heteroresistance[53] 
─ Detection of M. bovis in African buffaloes using QuantiFERON-TB Gold tubes and Qiagen cattle type IFNγ 

ELISA[54] 
─ Genetic resistance to M. tuberculosis infection and disease[55] 
─ PID in a TB endemic region[56] 
─ A sex-stratified GWAS of TB using a multi-ethnic genotyping array[57] 
─ Emergence of BDQ resistance[58] 

2000 

1990 

2005 

2010 

2015 

2020 

Fig. 1. Timeline of key contributions over 30 years from the Centre for Tuberculosis Research to molecular epidemiology, diagnosis, clinical studies and animal 
studies related to tuberculosis infection. (PCR = polymerase chain reaction; TB = tuberculosis; NF-κB = nuclear factor kappa-B; IFNγ = interferon gamma;  
BCG = bacille Calmette-Guérin; IGRA = interferon gamma release assay; EBA = early bactericidal activity; LTBI = latent TB infection; TNF1 = tumour 
necrosis factor 1; PET-CT positron emission tomography - computerised tomography; PID = primary immunodeficiency disorders; GWAS = genome-wide 
association study; BDQ = Bedaquiline.)
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and commercialised by Hain Lifescience. This assay has been extensively 
evaluated by the CTR and showed similar sensitivities as the Xpert 
MTB/RIF assay for M. tuberculosis detection from sputum samples 
but with the added advantage of further insight into the molecular 
mechanisms of resistance for both isoniazid and rifampicin.[63]

The implementation of gDST into routine care provided researchers 
the unique opportunity of determining the utility of these assays on 
non-sputum samples, including fine-needle aspirate biopsies (FNAB). 
In collaboration with the NHLS, we developed a protocol for FNAB, 
using the Xpert MTB/RIF assay,[64] where the sensitivity and specificity 
for detecting M. tuberculosis in FNAB were 96.7% and 88.9% for 
adults[34] and 80% and 93.8% for children, respectively.[65] These 
data contributed to the WHO’s recommendation for diagnosing 
extrapulmonary TB using the Xpert MTB/RIF assay.

Defining the phenotype-genotype association remains critical for 
the acceptance of gDST. The CTR was the second group globally to 
evaluate and help develop the Epicenter software (linked to the MGIT 
960 instrument), which allowed the determination of minimum 
inhibitory concentration (MIC) values and pairing these to genotypic 
data. These studies provided new insight into the genetic basis of 
resistance to capreomycin, amikacin, ofloxacin, moxifloxacin and 
ethambutol.[66-69] Much of these data have contributed to the WHO 
technical manual for DST of antibiotics used in the treatment of TB.[70]

Careful re-evaluation of isoniazid resistance confirmed that inhA 
promoter region mutations conferred low-level isoniazid resistance 
and ethionamide cross-resistance. Given that these mutations are 
easily detected by the MTBDRplus assay, we developed a policy 
brief requesting this information to be shared with clinicians to 
ensure standardised multidrug-resistant (MDR) TB treatment 
could be adjusted accordingly.[71] More recently, we queried the 
prediction of rifampicin resistance by the Xpert MTB/RIF assay, 
as MIC testing clearly indicated that not all rpoB mutations confer 
phenotypic resistance above the critical concentration (1 µg/mL, 
used to differentiate susceptible from resistant).[72] We have proposed 
that patients with reduced susceptibility to rifampicin could benefit 
from either high-dose rifampicin or an alternative rifamycin, namely 
rifabutin.[73] Clinical trials are now underway to evaluate the efficacy 
of such regimens but are expected to have great value in certain 
patients with XDR-TB (http://task.org.za/clinical-trials/).

DST remains technically challenging and it is imperative that 
alternative molecular-based methods are developed. This is 
particularly true for pyrazinamide DST, and the CTR has developed 
a simple workflow to enable detection of pncA mutations in clinical 
specimens[74] within a 48-hour period. Using this assay, we have 
shown that over 30% of MDR-TB cases and >90% of extensively drug-
resistant (XDR)-TB cases have associated PZA resistance routinely 

Fig. 2. A selection of IS6110 restriction fraction length polymorphism fingerprints from M. tuberculosis isolates of various representative strain families, 
clustered by similarity (Dice co-efficient) (below figure). The dendrogram was constructed using the UPGMA algorithm. Lane numbers are indicated by the 
first row of numbers, with the strain family identifiers in the second row. The figure was generated in Gelcompar (TM) ver. 6.5. Band positions are marked. 
Isolates with a similarity index >90 reflect transmission.
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undiagnosed[75] which, together with the 
strong association between ethambutol 
resistance and MDR-TB,[68] undermines the 
efficacy of standardised MDR treatment 
regimens. Ineffective treatment of MDR-TB 
has allowed the emergence of additional 
resistance, culminating in XDR-TB, which 
we termed programmatic selection.[41] 
These XDR-TB strains are now widespread 
and largely resistant to available anti-TB 
drugs and are on the verge of acquiring 
resistance to new and repurposed drugs. 
This highlights the need for comprehensive 
DST prior to treatment initiation to ensure 
improved outcomes. Through partnerships 
with the ReSeqTB platform,[76] the CTR 
continues to contribute by providing whole 
genome sequence (WGS) data as well as 
comprehensive phenotypic data. This 
contribution is essential for the interpretation 
of WGS data as a diagnostic to guide 
treatment of DR-TB.[77] Our diagnostic work 
has provided technical and scientific services 
to various provincial health departments, the 
gold mines, some state hospitals and various 
TB clinics.

Diagnostics are not only about the 
technology, but also its application in a real-
world setting. We conducted a systematic 
review done as part of a WHO process to 
directly inform policy on products for TB 
diagnosis.[78] We also investigated the South 
African (SA) TB care cascade, which is a tool 
by policymakers to set goals for strengthening 
the TB programme.[79] Furthermore, we 
described innovative approaches for how 
material typically discarded by laboratories 
can be used for detailed drug susceptibility 
testing (thus alleviating the need for additional 
specimen collection).[80] We recently identified 
widespread suboptimal performance of 
the only commercial molecular test for 
multidrug resistance (MTBDRplus) across 
dozens of laboratories worldwide and, 
importantly, demonstrated how this can be 
corrected by changing the conditions used 
for DNA amplification.[81] This is now in the 
process of being incorporated into WHO 
external quality assessment processes for TB 
laboratories.

The potential of immune-based 
point-of-care tests for TB
Despite the amazing progress made in 
diagnostics targeting the bacillus, there is 
still much room for improvement, perhaps 
targeting the host. The use of interferon-
gamma (IFN-γ)-based tests in the diagnosis 
of TB infection is widely known and hence 
we evaluated the accuracy of these tests in 
our high-burden settings. We were amongst 
the first to show that ex vivo (unprocessed) 

pleural fluid IFN-γ showed strong potential 
in the diagnosis of pleural TB.[28] Following 
the publication of these findings, a highly 
cited editorial about our work was written,[82] 
followed by several validation studies in 
low- and high-burden settings. At least 
one company is now developing an ex vivo 
pleural fluid IFN-γ point-of-care test for the 
disease.[83] We showed that there was high 
discordance between three known tests for 
M. tuberculosis infection (tuberculin skin test 
(TST), QuantiFERON TB Gold and T SPOT.
TB) both in HIV-infected and -uninfected 
adults and children.[84] These studies 
confirmed the limited value of the new and 
relatively expensive interferon gamma release 
assays (IGRAs) over the TST in high-burden 
countries such as SA. Findings from these 
studies were replicated in other parts of the 
world and our articles have been included 
in meta-analyses that contributed to policy 
statements on the use of IGRAs.[85,86]

Development of a point-of-care 
fingerprick blood-based test for TB
Following our findings that IGRAs were 
not necessarily useful in high-burden 
settings, we were the first to report that 
the use of three host markers, produced 
by T cells after stimulation of whole blood 
with the antigens that are used in IGRAs 
(ESAT6/CFP10/TB7.7), showed potential 
as a tool for the diagnosis of active TB 
(South African Patent: ZA 2009/05156).[30] 
Similarly, we were one of the first groups 
conducting large-scale studies on the use 
of alternative antigens (other than those 
used in IGRAs) as diagnostic candidates for 
TB disease. We showed that combinations 
between different M. tuberculosis infection 

phase-dependent antigens had potential 
to be used as diagnostic tools for TB 
(International Patent: PCT/IB2013/054377; 
US 14/403,659). In the course of conducting 
validation studies on these biosignatures in 
other African countries, however, we noticed 
that biomarkers detectable in unstimulated 
blood samples may be more promising than 
antigen-stimulated biomarkers, besides being 
more promising as point-of-care diagnostic 
tests. We identified and validated host 
protein biosignatures from serum samples 
which showed strong potential for further 
development into a point-of-care test for TB 
(International Patent Application No.s: PCT/
IB2017/052142 and PCT/IB2015/051435)[48] 
and have successfully developed a point-
of-care fingerprick test based on these 
biomarkers in collaboration with our other 
African and European partners (www.
screen-tb.eu). A clinical trial evaluating 
the utility of this fingerprick blood-based 
point-of-care test is currently ongoing in the 
participating African countries.

The use of positron emission 
tomography - computerised 
tomography (PET-CT) and 
translation of findings from 
PET-CT findings to more easily 
implementable tools for monitoring 
the response to TB treatment
In a ground-breaking study conducted at 
the CTR, PET-CT imaging technology was 
used to assess the progress of lesions in 
TB patients undergoing standard anti-TB 
therapy (Fig. 3). The technology was shown 
to be a useful tool to monitor the response 
of patients to treatment, through healing of 
the granulomatous lesions or appearance of 

Fig. 3. 18F-FDG PET-CT scans tracking the extent and metabolic activity of lung lesions of a cured 
TB patient during 6 months of standard treatment. Three-dimensional anterior (top) and transverse 
slices (below, at the level of horizontal blue line). Diagnosis (Dx), month 1 (M1) and month 6 (M6) of 
treatment.
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new ones on the images, with PET-CT images that are consistent with 
active TB still present in the lungs of several presumed cured patients 
at the end of treatment.[49] The interpretation of this finding is not yet 
clear, but may have serious implications and be useful as a monitoring 
tool for trials. These imaging patterns correlated with the presence 
of M. tuberculosis mRNA in sputum and broncho-alveolar lavage 
specimens from these patients at the end of treatment. A randomised 
controlled trial is currently ongoing in field sites in the Western 
Cape (SA) and China, aimed at employing PEC-CT imaging and 
the GeneXpert test results as a TB treatment-shortening tool (www.
predict-tb.com).[50] The ultimate aim of the project, which is currently 
ongoing, is the identification of easily measurable biomarkers that 
can be used as replacement tools for PET-CT at the point of care.

Clinical trials
TASK Applied Sciences (http://task.org.za), today an extramural 
clinical research unit with more than 150 employees, had its origins 
in the CTR. We knew that evaluation of new candidate antibiotics 
would be important and, to this end, initiated planning for a clinical 
trial team to be led by Professor Andreas Diacon. At this time, a 
team led by Koen Andries at Janssen in Beerse, Belgium, discovered 
a new potential antibiotic active against M. tuberculosis.[87] Preclinical 
results with TMC207 (bedaquiline) looked promising, but the team 
hit a roadblock when looking for institutions that could assist with 
establishing proof-of-concept in actual TB patients. A decades-long 
dearth of clinical anti-TB drug evaluation had extinguished almost all 
such research capacity. Moreover, rigorous ethical and methodological 
standards now applied to testing of new pharmaceuticals. New 
methods were needed to create evidence of efficacy and safety for a 
new TB antibiotic. Only registration with strict regulatory authorities 
would eventually allow the people who needed those drugs to access 
them. Our team and MRC colleagues in Durban responded and 
showed that bedaquiline indeed reduced the number of mycobacteria 
in sputum within the first week of treatment.[29] This work established 
clinical proof-of-concept for the first new anti-TB treatment in 
decades. Other projects with new or repurposed antibiotics followed 
in quick succession. The CTR supported the first formal clinical 
trials in drug-resistant TB that TASK conducted with bedaquiline in 
Brooklyn Chest Hospital, Cape Town. These studies were instrumental 
in obtaining registration for bedaquiline in 2012.[45,88] The drug has 
since saved the lives of many patients infected with TB resistant to 
conventional agents and is now becoming a standard agent in new 
regimens. Such early bactericidal activity studies for proof-of-concept 
have become the standard method endorsed by both the US Federal 
Drug Administration and the European Medicines Agency. TASK, 
assisted by the University of Cape Town Lung Institute, is now the 
leading centre for proof-of-concept studies in TB. It is good news that 
numerous other new or repurposed antibiotics for TB are currently 
undergoing such testing and are on their way to joining bedaquiline 
as treatment options.[33,37,89,90] It is very likely that in a few years we will 
have shorter, safer and better-tolerated treatment regimens available for 
treatment of TB of various resistance profiles.

Using next-generation sequencing technologies in clinical 
settings
It is now clear that genetic background influences susceptibility or 
resistance to TB. We have not yet progressed to being able to use this 
information for standard TB cases; however, in special cases, genetic 
tools are already being used. For patients suffering from rare genetic 
diseases, which can include children who present with BCGosis after 
vaccination,[25] or multiple episodes of TB, an accurate diagnosis is 
crucial for treatment and management. The problem is that some 

rare diseases often present with combinations of symptoms that 
are unfamiliar to the physicians treating them, making diagnosis 
challenging. It is estimated that up to 50% of people suffering from a 
rare genetic disease never receive a diagnosis.[91] Often, these patients 
have embarked on a ‘diagnostic odyssey’ that includes consultations 
with several specialists, a number of invasive interventions and 
expensive laboratory tests. This very slow process can incur crippling 
costs for the patient and may not yield the diagnosis they so 
desperately need, or not in time to benefit the patient.

With the significant reduction in the costs of next-generation 
DNA sequencing technology, we can now afford to use whole-
exome sequencing (WES) in clinical settings to diagnose rare 
genetic disorders. At the CTR, a multidisciplinary team of 
researchers and physicians known as the Primary Immunodeficiency 
Disorders Genetics Research Group (PIDDGEN) has, since 2014, 
used WES to provide genetic diagnoses for patients with primary 
immunodeficiency disorders (PIDs).[56] PIDs comprise over 300 
different heritable disorders which are caused by inborn errors 
of the immune system that result in increased susceptibility to 
infection, autoimmunity, autoinflammation, allergy and tumours. 
PIDs are challenging to diagnose because of their variable clinical 
presentations but, in many cases, PIDDGEN has already been able to 
make a definitive diagnosis only through WES.[51,92,93]

One such case clearly illustrates the value of WES for diagnosis of 
PIDs: Patient CE, a young girl from a non-consanguineous marriage, 
was at two years of age diagnosed with humoral immunodeficiency 
after presenting with a BCG abscess on the upper leg. CE was 
placed on intravenous immunoglobulin replacement therapy, but 
developed BCG meningitis a year later. She subsequently received 
acute-phase INH, RIF, ETH and dexamethasone treatments and 
thereafter only INH and RIF. Two years later, the patient presented 
with acute loss of consciousness and raised intracranial pressure. 
BCG, genotypically sensitive to all the above prescribed drugs, was 
cultured from the patient. Immunological workup showed slightly 
elevated CD4 and B cell levels, with normal T cell proliferations to 
a range of different mitogens and recall antigens, as well as normal 
IFN-γ production by T cells. Slightly low CD8 and NK cell levels 
were observed, with decreased up-regulation of CD69 on NK cells 
after IL-2 stimulation. T cell receptor excision circles (TRECs) and 
kappa-deleting recombination excision circles (KRECs) were clearly 
visible. Class-switched memory B cells also remained persistently low. 
The patient’s memory T cells were low in relation to the naïve T cells 
and, interestingly, reduced levels of γ/δ T cells were also observed – 
cells involved in the innate immune reaction against mycobacteria. 
Exome sequencing of the patient identified a mutation in the NF-κB-
inducing kinase (NIK) encoding gene, MAP3K14 (homozygous 
NIKVal345Met). Both parents of this patient were heterozygous 
carriers of the mutation. Using an overexpression cell model to mimic 
the effects of the mutations, we showed that the mutation significantly 
impaired the ability of NIK to phosphorylate IKKα.[51]

Subsequent to this finding, we identified the same mutation 
in another patient presenting with destructive pneumonia and 
hypogammaglobulinaemia. Both parents were heterozygous carriers 
of the mutation. This already BCG-vaccinated patient is being 
monitored closely for any evidence of developing dissemination. 
A further infant sibling was shown to be negative for the variant.

This case highlights the potential impact of next-generation 
sequencing (NGS) techniques such as WES on patient care. The 
integration of WES into clinical settings will enable accurate molecular 
diagnosis for patients suffering from diseases with unclear phenotypes 
or atypical presentation. NGS technologies are providing significant 
opportunities to implement personalised health strategies such as 
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the early detection of disease, improved 
health maintenance and tailored therapies, 
particularly for patients with rare genetic 
diseases.

Tuberculosis in animals
Zoonotic TB was a major component of TB in 
years gone by, prompting public health efforts 
such as milk pasteurisation and slaughter of 
infected livestock to reduce prevalence. TB in 
livestock has become increasingly recognised 
as a global problem with serious economic and 
conservation implications. For this reason, 
the CTR began investigations into this topic 
some years ago. In SA, implementation of the 
CTR Animal TB Group’s newly developed 
bovine tuberculosis (bTB) diagnostic assays 
such as the QuantiFERON TB-Gold Plus 

IFN-γ assays and IFN-γ induced protein of 
10 kDa (IP‑10) assays are now routinely 
used by conservation organisations such as 
Hluhluwe iMfolozi Park (HiP) and Kruger 
National Park (KNP) for the detection of 
bTB in African buffaloes (Fig. 4).[54,94-96] For 
the past 11 years, the Animal TB Group has 
been successfully involved in HiP’s annual 
African buffalo bTB reduction programme, 
which has resulted in a significantly reduced 
bTB prevalence in this species. In KNP, recent 
discoveries of bTB in African rhinoceros led 
to South African National Parks (SANParks) 
developing a TB management policy based 
on the Animal TB Group’s research for these 
species and various others.[97-99] Discovery 
of bovine TB in rhinoceros has prompted 
the Department of Agriculture, Forestry 

and Fisheries (DAFF) to place a moratorium 
on movement of these animals from known 
infected areas, with negative consequences 
for conservation. Speciation tests developed 
in the CTR are now used in the only routine 
service DAFF-accredited laboratory in SA. 
This work and other developments have led to 
far more accurate diagnosis in animals and has 
overturned assumptions in many interesting 
cases, for example our finding of M. tuberculosis 
in a free-ranging African elephant in KNP.[100] 
The CTR has also described two entirely new 
species of pathogenic mycobacteria in this  
process.[101,102]

Research in a wide variety of animals 
including African wild dogs, African lions, 
antelope such as the greater kudu (Fig. 5), 
warthogs, hyenas and domestic livestock[103-106] 
has drawn the attention of not only the 
Wildlife Ranching Association of SA, but 
also that of various private international 
zoos. We provide ongoing assistance to 
DAFF, SANParks, the National Zoological 
Gardens and others, such as the Namibian 
Wildlife Service, regarding TB in wild and 
domestic animals. In addition, this research 
provides a foundation for understanding the 
risk of zoonotic transmission of M. bovis, 
as emphasised in the WHO ‘Roadmap for 
Zoonotic TB’.[107]

Conclusion
Critical initial research findings of the CTR 
were that the SA TB epidemic was being 
driven by diverse, highly transmissible strains, 
harbouring resistance-associated mutations 
and accumulating further resistance owing 
to sub-optimal treatment. The epidemic was 
clearly not under control and therefore we 
believed that our understanding of disease 
dynamics was faulty. This view directed the 
early research agenda towards diagnostics, 
antibiotic use and resistance,[108] in line with 
WHO TB research priorities (diagnostics, 
drugs and vaccines),[109] as well as molecular 
epidemiology. Our work subsequently 
expanded to include epidemiology, 
bacteriology, genetics, immunology and the 
various ‘omics’ technologies that are now well 
known. We have used these tools in basic 
research, but also for direct and individual 
bench-to-bedside healthcare, and also 
to understand the dynamics of the disease 
in order to best design intervention and 
prevention strategies. In this context, CTR 
research findings have highlighted incorrect 
assumptions, led to improved understanding 
and, in the process, inspired ourselves and 
others to contribute towards TB research in 
new ways. We firmly believe that the CTR’s 
research has shaped our knowledge and helped 
us to avoid continuing the mistakes of the past.

Fig. 5. Multiple subcutaneous lumps caused by bovine tuberculosis (bTB)-infected lymph nodes in the 
parotid area of a greater kudu cow. A frequent citing in areas endemic for bTB such as Kruger National 
Park (Limpopo) and Hluhluwe-iMfolozi Park (KwaZulu-Natal).

Fig. 4. Gross pathological changes in the lungs of an African elephant with M. tuberculosis disease. 
Lung lesions consist of multifocal to coalescing encapsulated cavities (10 - 15 cm in diameter).
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