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Hepatocellular cancer (HCC) is the most common primary cancer 
of the liver and was accountable for 782 000 incident cases in 
2012. Of these cases, an alarming 745 000 patients died.[1] These 
figures attest to the dismal post-diagnosis outlook (3.4 months 
median survival) with or without screening.[2] The chief risk factor 
for HCC in most patients is cirrhosis. In 80 - 90% of all cases, 
HCC is due to hepatitis B (HBV) and C (HCV) virus infections. 
Furthermore, because of diabetes and obesity, there is an increasing 
prevalence of non-alcoholic fatty liver disease (NAFLD), which 
is now the most common liver disorder in North America.[3] The 
annual incidence of NAFLD-related HCC has increased by 9% 
per year from 2004 to 2009.[4] Notable co-factors, such as alcohol, 
primary or secondary iron overload and aflatoxin contamination 
of stored food products are thought to play a synergistic role in 
promoting hepatocarcinogenesis, particularly in the context of 
HBV and non-alcoholic steatohepatitis.[5,6] HCC is a complex 
disease due to its heterogeneity: from a clinical perspective in 
addition to the multiple aetiological risk factors, HCC typically 
has a prolonged asymptomatic phase early in the disease, and 
thus tends to present late with an aggressive phenotype that 
may not be amenable to currently available therapies. In terms 
of diagnosis and response to treatment, HCC displays several 
histopathological phenotypes, including, but not limited to, well 
and poorly differentiated tumours, and tumours exhibiting features 
of both hepatocellular and cholangiocarcinoma.[7] At the molecular 
level, HCC is characterised by dysregulation of multiple genetic, 
epigenetic and signalling pathways that interact with the tumour 
microenvironment to facilitate tumour initiation, progression and 
metastasis. This review aims to concisely elucidate the current 
understanding of the molecular and cellular pathogenesis of HCC 
outlined in Table 1. 

Cancer phenotype
Normal cells are originally embryonically and developmentally 
equivalent. However, they undergo a sequential process of cell fate 

determination, proliferation and differentiation. This process is 
dependent on extra- and intracellular interactions that are governed 
by various signalling pathways.[8] Physiologically, these pathways 
are activated during early life but are dormant in adulthood. 
However, following inflammation or another insult, these pathways 
are re-activated, resulting in dysregulated cellular signalling, which 
accounts for the metamorphosis from normal to transformed 
malignant cells. Cancer cells, therefore, owing to genomic instability 
and/or mutations induced by cellular damage, have a distinct 
phenotype. These cells acquire the ability to: (i) autonomously 
proliferate (i.e. they are independent of external mitogenic signals); (ii) 
avoid both anti-growth and apoptotic signals, giving them a growth 
advantage; and (iii) deregulate certain cellular functions responsible 
for cellular growth and differentiation.[9] Furthermore, cancer cells 
exploit signalling pathways to penetrate surrounding healthy tissue 
including the vascular epithelium, resulting in metastases to distant 
sites. Moreover, there is ample evidence that by their existence, cancer 
cells are able to suppress T-cell cytotoxicity and related immune 
mechanisms. This aggressive phenotype underpins the hallmark of 
carcinogenesis and explains malignant transformation. Therapies 
aimed at halting this autonomy need to be able to keep up with 
the many mechanisms involved; therefore, an understanding of the 
pathways is a pre-requisite.

Current concepts of 
hepatocarcinogenesis
Multi-step process
The currently accepted model of hepatocarcinogenesis is a multi-
step process from tumour initiation to established malignancy. 
The evidence for step-wise progression of HCC is that normal 
hepatocytes are transformed to pre-neoplastic lesions, which occur 
in the form of dysplastic foci and nodules (DN) (<1 mm and  
>1 mm, respectively).[10] With ongoing chronic inflammation, these 
early lesions progress to low- and high-grade dysplasia, both of which 
have the potential to progress to HCC (Fig. 1).[11,12] The underlying 
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mechanism of sequential progression is 
incompletely understood but is thought 
to be due to progressive hepatocyte 
dedifferentiation due to impaired liver-
specific gene expression and the alteration 
of numerous signalling pathways, leading to 
dysregulated cell proliferation and resistance 
to apoptosis.[13] In patients with HCC gene 
expression, patterns of cell proliferation 
markers and anti-apoptotic genes were 
significantly higher in the group of patients 
with poorer prognosis, lending credence to 
their significance in HCC pathogenesis.[14,15] 

Cancer stem cells
The long-held stochastic model of HCC 
pathogenesis states that damaged cells 
in tissue can randomly result in tumour 
initiation and/or growth. An attractive 
alternative theory is that within a tumour, 
a small population (<1%) of cells have 
phenotypic characteristics of adult 
progenitor stem cells, in that they have 
an inordinate capacity to autonomously 
proliferate and self-renew. As a result of a 
loss of regulation these cells accumulate, 
forming the bulk of the tumour (also called 
the cancer stem cell compartment) and 
are implicated in tumour initiation and 
maintenance.[16,17] The expression of liver 
stem cell markers has been found in large 
numbers of human HCC, suggesting that 
human stem cells give rise to HCC.[18] In 
fact CD133, one of the tumorigenic stem 
cell markers, was found in both HCC cell 
lines and primary tissues.[19,20] Furthermore, 
the clinical relevance of these stem cells is 
that they have enhanced chemotherapy and 
radiotherapy resistance and are therefore 

typically associated with metastases and 
relapse.[20,21] In order to more effectively 
attain better survival outcomes from 
currently available therapies including 
immunotherapy, further work into 
understanding the genetic and signalling 
pathways that regulate this cellular 
compartment is urgently required.

Molecular pathways 
involved 
The requirement for carcinogenesis 
is a permissive milieu where genes and 
signalling pathways that regulate the fate of 

all cells, i.e. differentiation, proliferation and 
death ,are altered. In this context, mutations 
of oncogenes or tumour suppressor genes in 
HCC become more important determinants 
(Fig. 2).

Genetic factors
Mutations of the telomerase promoter
Telomeres are protective nucleotide 
sequences capping the ends of chromosomes. 
These are particularly significant in the 
context of the liver in that the reparative 
capability of the telomerase enzyme affords 
hepatocytes their near-inexhaustible 

Table 1. Summary of risk factors and molecular pathogenesis of hepatocellular carcinoma
Main risk factors Molecular factors Cellular factors Other factors
1. Cirrhosis

2. Hepatitis B virus

3. Hepatitis C virus

4. Non-alcoholic fatty liver disease 

5. Alcoholic liver disease 

6. Haemachromatosis

7. Aflatoxin 

1. Genetic mutations
•	 p53, TERT, others

2. Epigenetic
•	 Changes to DNA, histones
•	 Chromatin remodelling
•	 MicroRNAs

3. Aberrant signalling
•	 Tyrosine kinases
•	 Wnt-β catenin
•	 Notch
•	 Hedgehog

1. Cancer stem cells

2. Immune cells
•	 Tregs
•	 MDSCs

1. Checkpoint inhibitors

2. Immunosuppressive enzymes
•	 IDO
•	 Arginase

p53 =  total protein 53; TERT = telomerase reverse transcriptase; Tregs = T-regulatory cells; MDSCs = myeloid-derived suppressor cells; IDO = indoleamine 2,3-dioxygenase XX; 
Wnt-β = Wnt-Beta catenin.
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Fig. 1. Progression to hepatocellular carcinoma (HCC) starts with a chronic insult to the liver resulting 
in chronic hepatitis and ultimately cirrhosis, the chief risk factor for HCC. In a stepwise fashion, lesions 
progress from low-grade dysplasia (LGD), to high-grade dysplasia (HGD), dysplastic nodules and 
finally HCC. HCC may be well or poorly differentiated (not shown). (NAFLD/NASH = non-alcoholic 
fatty liver disease/non-alcoholic steatohepatitis.)
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regenerative ability. However, when chronic 
inflammation occurs, the rate of telomere 
shortening is accelerated, which co-operates 
with inactivating mutations of telomerase 
to contribute to the development of 
cirrhosis.[22,23] Under normal circumstances 
the telomerase enzyme is switched off to 
rid the body of senescent or abnormal 
cells. In HCC, however, mutations of the 
promoter region of the telomerase reverse 
transcriptase (TERT) allow malignant cells 
to evade apoptosis, resulting in an immortal 
phenotype. In HCC these are the most 
commonly described mutations, occurring 
in 29 - 60% of HCCs.[24,25]

Mutations of the total protein 53 (TP53) 
pathway
TP53 has many anticancer functions 
including DNA repair, inhibition of G1/S 
cell cycle progression, and initiation of 
apoptosis by regulating the transcription 
of protective antioxidant genes and 
transactivating pro-oxidant genes.[26]  
Inactivating mutations of TP53, are 
common in many cancers, not least 
in HCC, where they are present in  
18 - 50% of cases.[26,27] There are several 
variants of TP53 mutations in different 
cancers,[28] which suggests a role for 
environmental influences on cancer 
phenotype. In HCC the most well-
described TP53 mutation is a result of a 
transversion of G:C to T:A at codon 249, as 
a result of the synergism between aflatoxin 

B and HBV (particularly in endemic  
areas).[27,29,30] The detection of TP53 mutant 
DNA in plasma is a biomarker of both 
AFB(1) exposure and HCC risk.

Other mutations
There are many other genes involved in 
HCC that regulate proto-oncogene, tumour 
suppressor, signaling pathway, DNA-binding 
and other functions; these have been 
reviewed elsewhere.[7,31]

Epigenetic factors
Epigenetics refers to heritable alterations in 
gene expression not due to changes of the 
genome itself that, under normal conditions, 
are used by the body to control processes 
such as X chromosome inactivation.[32,33] 
Evidence exists, however, to suggest that 
changes in the epigenome are associated 
with HCC initiation and progression.[34] 
Epigenetic control is conferred by several 
mechanisms.

Modifications to DNA 
The generally accepted mechanisms by 
which carcinogenesis occurs are global 
hypomethylation resulting in activating 
mutations of oncogenes, e.g. in the 
Wnt pathway.[35] In HCC, however, the 
hypermethylation of promoter regions of 
tumour suppressor genes is more typical 
and results in their silencing[36] by either 
inhibiting the interaction of transcription 
factors with their promoter, or binding 

of methyl-CpG binding domain proteins, 
to methylated DNA.[37,38] Genome-
wide methylation profiling studies have 
identified multiple hypermethylated 
gene promoters including adenosis 
polyposis coli (APC) and others in HCC 
tumours compared with surrounding 
non-tumour tissue.[39-44] This is clinically 
relevant because, for instance, low levels 
of sphingomyelin phosphodiesterase 3 
(SMPD3), a potent tumour suppressor, 
were three times more likely to be 
associated with early recurrence of HCC 
after curative surgery in an independent 
patient cohort.[45,46] In this context, 
therefore, methylation profiling holds 
promise in terms of predicting patients 
who are more likely to progress to HCC.

Modifications to histones
Post-translational modifications resulting in 
an open or closed configuration of histone 
proteins, which affects their accessibility, 
have a significant effect on the ‘on’ or ‘off ’ 
state of gene expression.[47] While acetylation 
by histone acetyltransferases (HATs) causes 
activating transcription of genes,[48] histone 
deacetylases (HDACs) result in tight coiling 
of DNA around the histones, leading to 
transcriptional repression.[49] By contrast, 
methylation confers a dual role of activation 
or repression, which is context-specific. For 
example, tri-methylation of lysine 4 (K4) and 
36 on histone 3 (H3K4me3 and H3K36Me3) 
are transcriptionally active start sites (TSS) 
of active genes.[50-52] Histone H3 lysine 4 
(H3K27me3) is significantly elevated in 
patients with HCC, and this correlates with 
a poor prognosis (3.5-fold increased risk 
of death) as a result of aggressive tumour 
features, including vascular invasion, large 
tumour size and poor differentiation.[53,54]

Chromatin remodelling 
Epigenetic gene silencing can also 
be mediated by a group of chromatin-
modifying proteins known as polycomb 
repressive complexes (PRCs).

PRC1 and 2 are the chief epigenetic 
repressors involved in the maintenance 
of stem and adult cells and regulate 
repression by ubiquitination of group 
histone 2A lysine 119 (H2AK119), and 
tri-methylation of histone H3 lysine 
27 (H3K27), respectively.[55] Increased 
levels of EZH2, one of the components 
of the PRC2 complex, correlate with an 
aggressive HCC phenotype, associated 
with metastases and poor prognosis.[54,56]  
Mechanistically, EZH2 silences Wnt 
antagonists, thereby activating Wnt-β 
catenin signalling to promote cancer 
progression,[57] whereas knockdown causes 
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Fig. 2. Molecular pathogenesis of HCC is an interaction between aberrant signalling, key genetic 
mutations, epigenetic control of gene expression and induction of immunological tolerance.  
(MDSCs = myeloid derived suppressor cells; Tregs = T-regulatory cells; IDO = indoleamine 
2,3-dioxygenase; TERT = telomerase reverse transcriptase; lncRNAs = long non-coding RNAs.)
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re-expression of tumour suppressor mRNAs,[58] paying credence to 
its biological relevance.

Regulation by micro- and long non-coding RNAs 
MicroRNAs (miRNAs) are 17 - 25-nucleotide-long non-coding 
RNA molecules that up- or de-regulate post-transcriptional 
gene expression by modifying the stability of or degrading 
mRNA.[59,60] miRNAs/miR are important in the context of 
carcinogenesis because they regulate differentiation, 
development and oncogenesis.[61] In addition to regulating 
various cellular processes, miRNAs are epigenetic modulators 
by targeting mRNAs of epigenetic regulators including DNA 
methyltransferase 3 alpha (DNMT3A), DNA methyltransferase 
3 Beta (DNMT3B), polycomb mRNAs, EZH2 (as shown above), 
BMI1 and HDAC4.[62,63] miR-122 is most abundant in the liver 
and is frequently downregulated in HCC, which suggests its role 
as a tumour suppressor.[64,65] Additional miRNAs that function 
as tumour suppressors include miR-26a, miR-26b, miR-125b, 
miR-140-5p, miR-217, miR-138, miR-148b, miR-325, miR-451.
[36,63] These are decreased in HCC, and are associated with a poor 
prognosis, therefore they may function as potential biomarkers 
for HCC. Reduced miR-26 expression correlates with shorter 
survival, but encouragingly, these patients are more likely to 
respond to interferon alpha therapy, making it an ideal candidate 
for predicting response to therapy.[66]

Another group of non-coding RNAs (about 200 nucleotides 
in length) that regulate gene expression are the long non-coding 
RNAs (lncRNAs). Twenty percent of lncRNAs are associated with 
PRC2, through which they recruit and guide chromatin-modifying 
complexes to specific genomic regions to regulate gene expression.[67] 
Other mechanisms of gene regulation by non-coding RNAs involve 
downregulation of tumour suppressor gene, activation of cell cycle 
function and chromatin reprogramming to promote metastases.[68] 
These novel epigenetic regulators offer exciting opportunities for new 
therapies for HCC.

Signalling pathways
Several signalling pathways involved in all aspects of cell fate 
determination are exploited by cancerous cells to favour proliferation, 
growth, invasiveness and metastases. Although for clarity these will 
be discussed in separate sections based on their effect in tumour 
promotion, it is important to note that there is crosstalk between 
these pathways to mediate their effects. For example, Chung et al.[69] 

show evidence of tripartite signal induction of the insulin/MAPK/
ERK, Wnt and Notch pathways in a double transgenic mouse model 
of HBV/HBx protein to result in hepatocarcinogenesis.

Receptor tyrosine kinase pathways
Pathways involved with growth
The tyrosine kinases are key regulators of cellular proliferation, 
differentiation, survival, metabolism, migration and cell cycle 
control.[70,71] Binding of insulin-like growth factors (IGF), epidermal 
growth factor (EGF), hepatocyte growth factor (HGF/c-MET), 
transforming growth factor (TGF), basic fibroblast growth factor 
(bFGF), platelet-derived growth factor (PDGF), and vascular 
endothelium growth factor (VEGF) to their corresponding receptors 
initiates and activates signalling cascades that promote growth 
and differentiation. In the context of liver regeneration following 
an insult, these pathways are upregulated, resulting in aberrant 
signaling affecting multiple pathways,[72] promoting cancer initiation 
and progression. Downstream, the intracellular mediators of these 

pathways are the Ras-mitogen-activated protein kinase (MAPK) or 
extracellular signalling regulated kinase (ERK), phosphatidylinositol 
3-kinase (PI3K)/Akt kinase signalling pathways and JAK/STAT 
pathways that induce transcription of cell-proliferating genes  
via proto-oncogene cFos and transcription factor activator protein 
(AP-1).[73] Both IGF-I and IGF-II (increased expression in 12 - 44% 
of HCC) acting through the IGF-1 receptor (IGF-1R) are involved 
in the development and progression of HCC.[74] Similarly, EGFR, 
HGF and c-Met (a transmembrane tyrosine kinase) are implicated 
in aggressive HCC, associated with a poor prognosis.[75,76]

Pathways involved with angiogenesis 
HCC is a highly vascular tumour with high metastatic potential. 
This is partly due to activation of VEGF (through VEGFR2), PDGF 
(through FGFR-1) and bFGF signalling pathways involved in neo-
vascularisation, invasion and metastases.[77-79] High levels of VEGF 
are associated with postoperative recurrence and, therefore, poor 
prognosis in HCC.[80,81] Notably, bFGF intersects with VEGF to 
synergistically activate angiogenic pathways,[82] suggesting that it 
may indeed be a target for drug resistance against VEGF-targeted 
therapies. Furthermore, high preoperative serum bFGF levels are 
predictive of invasive tumour and early postoperative recurrence 
in patients undergoing resection, making this a potentially useful 
clinical biomarker.[79] These pathways can be inhibited by sorafenib; 
it is the only multi-tyrosine kinase inhibitor that targets VEGFR 1-3, 
PDGFR-β, c-kit, Flt3 and p38, and remains the only one approved 
for use in clinical practice for unresectable HCC. Sorafenib, 
however, confers only a 2 - 3-month survival benefit, highlighting 
the critical need for new therapies in this group of patients.[79,83] 
Newer trials have been designed that target either multiple tyrosine 
kinase inhibitors (TKIs) simultaneously or specific TKIs such 
as c-MET inhibitors or TGFβR in HCC sub-populations, with 
promising early results.[84]

Pathways involved with cell differentiation
Wnt-β catenin 
Wnt-β catenin is one of the most studied and commonly implicated 
aberrant pathways in early HCC. Due to the multitude of ligands 
and receptors involved, it renders the effects of signalling through 
this pathway unpredictable, with some binding resulting in 
inhibition and others activation of signalling. Notwithstanding, 
canonical Wnt signalling results in translocation of beta-catenin 
into the nucleus binding with TCF/LEF transcription factors 
coding for genes involved in cell proliferation angiogenesis, 
anti-apoptosis, and the formation of extracellular matrix (ECM), 
causing Wnt upregulation.[85,86] Mechanisms of Wnt activation 
include somatic mutations of CTBBB1, AXIN1 and AXIN2, as 
well as inactivation of tumour suppressor adenosis polyposis 
coli (APC), which mimic pathway activation. Other mechanisms 
include epigenetic control of proteins of Wnt signalling.

Notch
The Notch pathway is a primitive and highly conserved pathway 
that is crucial in mammalian embryogenesis, cell fate determination, 
liver repair and regeneration.[87] Its role in hepatic carcinogenesis is 
emerging; of the four Notch receptors, Notch 4 is well characterised 
as the most oncogenic, whereas Notch 1 may be either up- or 
downregulated. The function of Notch 3 appears minimal in HCC 
and that of Notch 4 is related to invasiveness and metastases rather 
than tumour initiation.[88] Similar to the Wnt pathways, aberration 
in the pathway results in activation or inhibition of oncogenes and 
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tumour suppressor genes, respectively, and cross-talk with other 
pathways, the net effect of which may explain the heterogeneous 
phenotypic expression. Notch signalling is aberrantly upregulated in 
HCC compared withnormal liver tissues.[89]

Hedgehog
Activation of Hedgehog signalling was shown to be oncogenic 
for the first time when blocking of this pathway resulted in 
reduced proliferation, apoptosis and repressed C-myc and cyclin 
D expression, both in human HCC samples and liver cancer cell 
lines.[90] Glioma-associated oncogene homolog-1 (Gli-1), a marker 
of Hedgehog pathway activation, is correlated to invasiveness 
and the risk of metastases in HCC. Inhibition of this pathway by 
small interfering RNA significantly suppressed adhesion, motility, 
migration and invasion of liver cancer cell lines and the expression 
and activities of both matrix metalloproteinases-2 and 9 (MMP-2 
and MMP-9).[91,92] Indeed, Hedgehog activation may be useful as a 
biomarker to delineate malignant from adjacent normal tissue and 
thus may be a useful target for local therapy,[91] particularly as an 
inducer of apoptosis.[93] Other mechanisms by which Hedgehog is 
oncogenic include the activation of MMP-9 through ERK.[94] A key 
role of Hedgehog activation is that it is an inducer of radiation-
induced liver fibrosis, which can be targeted with inhibitors to 
radiosensitise tumours prior to radiotherapy.[95] 

Immunological tolerance
The recent discovery and therapeutic potential of checkpoint 
inhibitors attests to the significant role of the immune system 
in the pathogenesis of HCC. The liver is an immunologically 
rich organ, elegantly poised to deal with gut-derived pathogens 
from the portal vein. More importantly, however, is its adaptive 
ability to effect immune tolerance as a protective mechanism 
to avoid excessive liver injury. This is achieved through several 
key immunological mechanisms: liver sinusoidal endothelial cells 
have a high expression of programmed death ligand 1 (PDL-1) 
and low expression of co-stimulatory CD80 and CD86,[96,97] and 
downregulate MHC molecules and dendritic cell activation,[98,99] 
thus curtailing their cytotoxic ability. In HCC specifically, there 
is immune exhaustion, typified by enhanced expression of 
co-inhibitory molecules PDL-1, cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4), lymphocyte-activation gene 3 (LAG3) and 
T cell immunoglobulin domain and mucin domain 3 (TIM-
3),[100] including decreased expression of effector cytokines, which 
limits cytotoxic effectiveness.[101] Additionally, within the HCC 
tumour microenvironment, the immune response is directed 
towards an immunosuppressive phenotype with the release of 
anti-inflammatory cytokines, interleukin-10 and TGF-β.[102] Other 
tumour evasion/escape strategies include the recruitment of 
immunosuppressive T-regulatory cells (T-regs) and monocyte-
derived myeloid suppressor cells (MDSCs), and inhibitory 
indoleamine 2,3-dioxygenase (IDO), tryptophan 2,3-dioxygenase 
(TDO) and arginase-1 enzymes, which render immune cells 
deficient of tryptophan and arginine required for optimal 
functioning. The mechanisms by which malignant cells are able 
to thrive in this nutrient-deficient milieu are under investigation. 
However, a paper by Timosenko et al. [103] describes the ability of 
HeLa cells to upregulate an amino acid transporter, solute carrier 
family 1 member 5 (SLC1A5), which imports tryptophan, whereas 
co-cultured T-cells were unable to do so, thus disabling their 
cytotoxic functioning.

Conclusion
Despite decades of research into molecularly targeted therapies, 
including the recent advent of immunotherapy, the armamentarium 
against HCC is at best discouraging. None of these agents, including 
sorafenib, have translated into clinically meaningful improved patient 
survival. As such, HCC remains a deadly cancer. The understanding 
of all hepatocarcinogenic pathways is therefore critical to yield to 
new and effective therapies for HCC. Specifically, the exploration of 
epigenetic and immunological factors may more imminently result in 
faster progress towards alternative therapies. These efforts will require 
closer collaborations, not only between various medical disciplines, 
but also with basic/molecular biology scientists, immunologists, the 
pharmacological industry, and government bodies. 
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