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Cystic fibrosis (CF), one of the most commonly diagnosed mono­
genic disorders, has been well researched in many nations. Primarily 
affecting the mucus-secreting organs of the body, such as the lungs, 
pancreas, liver and intestinal tract, no cure has been developed for 
this fatal disorder. Nevertheless, assisted by large-scale research 
efforts and advances in sequencing technologies, several countries, 
including Australia, Belgium, Canada, France, Germany, the UK, The 
Netherlands and the USA, have successfully established CF registries. 
These registries have had a positive impact on the management and 
therefore on the quality of life of patients with CF and have also 
provided benefit in terms of reducing the costs associated with their 
care.[1-3]

In countries in which CF research has been well established and 
where CF registries and/or newborn screening programmes exist, 
median survival rates for patients with CF have increased steadily 
year on year. Currently the median age of survival is 52 years in 
Canada,[4] 42 years in the USA,[5] 40 years in Europe[6] and 27 years in 
Australia.[7] In South Africa (SA), the life expectancy of a CF patient, 
as reported in 2008, was less than 21 years.[8] In comparison, life 
expectancy for Canadian, American, French, British and Australian 
CF patients in the same year was approximately 30, 37, 28, 27 and 
30  years, respectively.[9-13] Westwood[8] also highlighted the difference 
that existed between the median age of death in white individuals 
with CF, i.e. of Caucasian/European descent (25.8 years), and 
patients of mixed race (20.5 years) in the Western Cape Province of 
SA. Nevertheless, very little is known about causative CF variants 
in SA and other African nations.[14,15] This difference is due in part 
to the widespread and incorrect belief that CF only affects ‘white’ 
populations – a notion that is increasingly being shown to be 
incorrect.[16,17]

Consequences of an age-old problem 
and potential solutions
The initial assumption that CF could only affect white South Africans 
was in part based on the observed disparity in mutation detection 

rates between population groups. Variations in mutation detection 
rates have been influenced further by the fact that many CF-causing 
variants are population specific. Currently, more is known about CF 
mutations found in the well-characterised white SA population than 
any of the other affected population groups. As a result, causative 
variants are typically identified in 83% of white SA CF patients, while 
CF-associated variants have previously only been identified in 55% 
and 21% of mixed-race and black SA CF patients, respectively. [18] 
Screening panels initially used to diagnose CF in SA patients were 
based on variants that are common to European populations, and 
while attempts have been made to collect larger numbers of CF 
samples in other patient groups in SA, few publications addressing 
the chasm in variant data exist.

A lack of CF data in non-Caucasoid population groups is common 
to SA and other African countries. There are no patient registries for 
this disease on the African continent, which means that African CF 
patients cannot benefit from clinical interventions planned on the 
basis of trends in registry data. Despite the unparalleled genomic 
diversity that exists in African populations, African genomes have 
been vastly understudied.[19] This is illustrated in patients in whom 
genetic testing returns false-negative results because the CF-causing 
mutations have not been fully characterised in their population(s). In 
some cases, this problem has been resolved through the application of 
gene sequencing methods.[20,21] Adding further complexity to existing 
information is the fact that a significant proportion of reported SA 
CF data were published over 10 years ago (Table 1). Altogether, 
when considering the lack of data and the absence of an SA newborn 
screening programme, making a quick and accurate molecular 
diagnosis of CF is difficult in many cases, and assessing the health 
of the local CF population in order to propose and implement the 
interventions needed to improve prognosis is challenging.

Early detection of CF has repeatedly been shown to be of benefit 
to patients and public healthcare systems.[30,31] For instance, in 2012, 
65%, 63%, and 50% of all new CF cases in Australia, France and The 
Netherlands, respectively, were detected through neonatal screening 
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programmes.[12,32,33] In 2011, neonatal screening accounted for the 
detection of 74% of all new CF cases in the UK.[13] This has been 
highly beneficial, since early detection of CF can reduce negative 
nutritional outcomes, general health complications and decline in 
cognitive capacity, thereby improving the overall health of affected 
patients.[34,35] Early diagnosis has also been shown to provide an 
economic benefit. For example, Dutch patients identified by newborn 
screening programmes spend about a million euros less on treatment 
over the course of their lives than patients not discovered through 
this method.[36] Interestingly, despite the clearly demonstrated benefit 
of early diagnosis, in studies conducted on SA CF patients there is 
no correlation between specific CF variants and the severity of lung 
function decline and associated nutritional status.[37,38]

Based on CF variant data that are currently available, the most 
common CF variants in SA are ΔF508, c.3120+1G>A, c.3272-26A>G 
and 394delTT, which have been identified in 69.8%, 13.2%, 3.4%, 
and 3.0% of screened patients, respectively (Table 2). However, as 
reflected in Table 1, different screening methods were used in the 
detection of these variants. Although not always feasible, especially 
in early studies, it must also be noted that not a single reported 
study has made use of an unbiased DNA sequencing approach. For 
example, many black SA patients are screened only for the presence 
of the c.3120+1G>A variant in order to make a positive molecular 
diagnosis of CF.[17,18,39] Novel or SA-specific mutations in the major 
population groups have therefore gone undiscovered or could not 
have been detected owing to limited screening capacity. An additional 
confounding factor, as illustrated in Table 3, is that SA CF data have 
largely been dominated by white patients, a minority genetic group 
in the country. Although historical factors are largely responsible for 
this phenomenon, access to and the cost of sequencing technology 
now make it possible to obtain new information with relative ease, 
affordability and speed.[40] Use of advanced sequencing methods, 

particularly in majority population groups, would be of benefit to SA 
CF patients, since SA is home to some of the most genetically diverse 
population groups in the world.[41]

A need for more molecular data to assist with accurately 
diagnosing SA and African CF patients therefore exists. Nevertheless, 
as illustrated by existing CF registries, several types of data (and not 
just causative variant information) are investigated. In the absence of 
molecular data, developing algorithms that can aid in the diagnosis of 
CF given limited clinical, biochemical and/or molecular information 
may be invaluable to SA clinicians in the interim. Although such 
programmes/tools are only as good as the quality and quantity of 
available data, they at least have the potential to present baseline 
probabilities as to a positive CF diagnosis. Such tools might easily 
serve as a standard by which potential CF patients could be selected 
for sequencing projects, thereby maximising the odds of identifying 
previously undescribed CF variants. In so doing, more exact data 
could be fed back into diagnostic algorithms to improve their 
accuracy.

Conclusions
The lack of standardised SA CF data is having a negative impact on 
the longevity of SA CF patients. Driving CF research with the distinct 
aims of: (i) identifying CF variants relevant to all SA population 
groups; (ii) establishing and maintaining a country-specific CF 
database/registry; (iii) establishing a solid foundation for a newborn 
screening programme; and (iv) exploring novel means through which 
a positive clinical diagnosis could be made (given limited molecular 
data) would be of great benefit to the overall care received by many 
local patients. The first of these points can be achieved through 
the use of next-generation sequencing methods, whole-exome 
sequencing, and/or targeted sequencing of the CFTR (cystic fibrosis 
transmembrane conductance regulator) gene. Although presenting 

Table 1. Methods employed to detect CF-associated variants in SA CF patients
Authors Publication year Reference Method(s) used to detect CF variant(s)
Denter 1992 22 Selective screening for the ΔF508 variant only
Herbert and Retief 1992 23 Selective screening for the ΔF508 variant only
Osborne et al. 1992 24 Selective screening for the N1303K variant only
Carles et al. 1996 25 PCR, DGGE (exon for exon), and finally direct sequencing of aberrant migrating or 

heteroduplex DGGE bands
Padoa et al. 1999 26 Selective screening for four variants, SSCP analysis to detect an additional 

variant, and sequencing of aberrant bands that indicated the presence of a sixth 
CF-associated allele. This article states that the ΔF508 variant was not found in 
this study, but is unclear whether testing for this variant occurred in the CF and 
suspected CF individuals

Romey et al. 1999 27 DGGE and direct sequencing of the minimal CFTR promotor region. Single region 
studied

Goldman et al. 2003 18 In black SA CF patients: selective screening for c.3120+1G>A, and if not found, 
additionally screened for ΔF508. In coloured SA CF patients: selective screening 
for 24 variants. Five patients screened only for ΔF508. In white SA CF patients: 
Selective screening for 24 variants

Des Georges et al. 2008 28 SQF-PCR and WGA with MLPA in patients whose samples did not undergo WGA
De Carvalho and 
Ramsay

2009 29 MLPA for CNV detection

Masekela et al. 2013 17 Selective screening for the c.3120+1G>A variant in patients in whom either no 
variants or only a single variant had previously been detected. Variant data not 
stratified according to ethnicity and only the c.3120+1G>A variant results reported

CF = cystic fibrosis; SA = South African; PCR = polymerase chain reaction; DGGE = denaturing gradient gel electrophoresis; SSCP = single-strand conformation polymorphism;  
CFTR = cystic fibrosis transmembrane conductance regulator; SQF = semiquantitative fluorescent multiplex; WGA = whole-genome amplification; MLPA = multiplex ligation-dependent  
probe amplification; CNV = copy number variation.
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their own unique challenges, sincere, multidisciplinary collaborative 
efforts that involve stakeholders from academic, private, public and 
government sectors would be able to address the remaining points. [42] 
Together, these changes could ensure a healthier and longer future for 
all SA CF patients.

Acknowledgements. The authors thank colleagues who have contributed 
to the multiple discussions and feedback sessions held around this 
topic. They also thank the various institutions and enterprises that have 
contributed financially towards this research.
Author contributions. All the authors contributed equally to the conception 
and construction of the article. JvR and MA were responsible for collating 
SA CF variant data, while CS and MSP were responsible for contributions 
relating to global incidence data and the economic impact of CF.
Funding. Funding sources include the Institute for Cellular and Molecular 
Medicine and the Genomics Research Institute of the University of 
Pretoria, the South African Medical Research Council, and the National 
Research Foundation of South Africa.

Conflicts of interest. None.

1.	 Yuanyuan G, García-Pérez S, Massie J, van Gool K. Cost of care for cystic fibrosis: An investigation 
of cost determinants using national registry data. Eur J Health Econ 2015;16(7):709-717. https://doi.
org/10.1007/s10198-014-0621-5

2.	 Larsson S, Lawyer P. Improving Health Care Value: The Case for Disease Registries 2011. Boston 
Consulting Group, 2016. https://www.bcg.com/publications/2011/health-care-payers-providers-
public-sector-value-based-health-care-interactive.aspx (accessed 9 July 2018).

3.	 Thomas M, Wanyama SS, Vermeulen F. The Belgian Cystic Fibrosis Registry. Brussels: Scientific 
Institute of Public Health (WIV-ISP): Registre Belge de la Mucoviscidose, 2011:1-44.

4.	 Stephenson A, Mak D, Mahmood A, et al. The Canadian Cystic Fibrosis Registry: 2015 Annual Report. 
Toronto: Cystic Fibrosis Canada, 2015:1-40.

5.	 Marshall BC, Elbert A, Petren K, et al. Cystic Fibrosis Foundation Patient Registry: 2015 Annual Data 
Report. Bethesda, Md.: Cystic Fibrosis Foundation, 2015:1-49.

6.	 Ikpa PT, Bijvelds MJC, de Jonge HR. Cystic fibrosis: Toward personalized therapies. Int J Biochem Cell 
Biol 2014;52:192-200. https://doi.org/10.1016/j.biocel.2014.02.008

7.	 Burke N, Bell S, Bye P, et al. Cystic fibrosis in Australia: 16th Annual Report from the Australian Cystic 
Fibrosis Data Registry. Baulkham Hills, NSW: Cystic Fibrosis Australia, 2013:1-44.

8.	 Westwood AT. The prognosis of cystic fibrosis in the Western Cape Province of South Africa: A 33 year 
study. J Cyst Fibros 2008;7(S2):458. https://doi.org/10.1016/s1569-1993(08)60436-1

9.	 Marshall BC, Hazle L. Cystic Fibrosis Foundation Patient Registry: 2008 Annual Data Report. 
Bethesda, Md.: Cystic Fibrosis Foundation, 2008:1-24.

10.	 Stewart T, Bell S, Bye P, et al. Cystic Fibrosis in Australia: 11th Annual Report from the Australian 
Cystic Fibrosis Data Registry. North Ryde, NSW: Cystic Fibrosis Australia, 2008:1-57.

11.	 Stephenson A, Berthiaume Y, Chilvers M, et al. Canadian Cystic Fibrosis Patient Data Registry Report: 
2008. Toronto: Cystic Fibrosis Canada, 2015:1-40.

12.	 Bellis G, Lemonnier L, Sponga M, Zeghidour N. French CF Registry: Annual Data Report 2012. Paris: 
Vaincre la Mucoviscidose and Ined, 2014:1-48.

Table 2. Variant frequencies based on definitive outcomes*
Variant White Black Mixed Black and mixed Not stated Total frequency
ΔF508 78.32 (531/678) 0 (0/52) 50.88 (58/114) - - 69.79 (589/844)
3120+1G>A 0.5 (2/402) 31.25 (20/64) 17.44 (15/86) 73.33 (44/60) - 13.24 (81/612)
3272-26A>G 3.98 (16/402) 0 (0/6) 1.16 (1/86) - - 3.44 (17/494)
394delTT 3.73 (15/402) 0 (0/6) 0 (0/86) - - 3.04 (15/494)
G542X 1.74 (7/402) 0 (0/6) 2.33 (2/86) - - 1.82 (9/494)
c.54-1161_c.164+1603del2875 - 5.56 (1/18) 0 (0/48) - - 1.52 (1/66)
G551D 0.75 (3/402) 0 (0/6) 2.33 (2/86) - - 1.01 (5/494)
W1282X 1.0 (4/402) 0 (0/6) 0 (0/86) - - 0.81 (4/494)
R553X 1.0 (4/402) 0 (0/6) 0 (0/86) - - 0.81 (4/494)
N1303K 1.0 (4/402) 0 (0/6) 0 (0/86) - 0 (0/14) 0.79 (4/508)
94G>T 0 (0/402) 5.56 (2/36) 0 (0/86) - - 0.38 (2/524)
D1270N - 8.33 (2/24) - - - 8.33 (2/24)
G1249E 0 (0/402) 4.17 (1/24) 0 (0/86) - - 0.20 (1/512)
2789+5G>A 0.25 (1/402) 0 (0/6) 0 (0/86) - - 0.20 (1/494)
3196del54 0 (0/402) 16.67 (1/6) 0 (0/86) - - 0.20 (1/494)
3659delC 0.25 (1/402) 0 (0/6) 0 (0/86) - - 0.20 (1/494)
1717-1G >A 0.25 (1/402) 0 (0/6) 0 (0/86) - - 0.20 (1/494)
621+1G>T 0.25 (1/402) 0 (0/6) 0 (0/86) - - 0.20 (1/494)
Q493X 0.25 (1/402) 0 (0/6) 0 (0/86) - - 0.20 (1/494)
R1162X 0 (0/402) 0 (0/6) 1.16 (1/86) - - 0.20 (1/494)
R117H 0.25 (1/402) 0 (0/6) 0 (0/86) - - 0.20 (1/494)
S549N 0.25 (1/402) 0 (0/6) 0 (0/86) - - 0.20 (1/494)
2183delAA 0 (0/402) 2.94 (1/34) 0 (0/86) - - 0.19 (1/522)
R334W - 0 (0/6) - - - 0 (0/6)
3849+10kbC>T - 0 (0/6) - - - 0 (0/6)
A455E 0 (0/402) 0 (0/6) 0 (0/86) - - 0 (0/494)
E60X 0 (0/402) 0 (0/6) 0 (0/86) - - 0 (0/494)
ΔI507 0 (0/402) 0 (0/6) 0 (0/86) - - 0 (0/494)
R347P 0 (0/402) 0 (0/6) 0 (0/86) - - 0 (0/494)
S1251N 0 (0/402) 0 (0/6) 0 (0/86) - - 0 (0/494)
1078delT 0 (0/402) 0 (0/6) 0 (0/86) - - 0 (0/494)
2183AA>G 0 (0/402) 0 (0/6) 0 (0/86) - - 0 (0/494)
A559T - 0 (0/24) - - - 0 (0/24)
S1255X - 0 (0/24) - - - 0 (0/24)
444delA - 0 (0/24) - - - 0 (0/24)

*Values before the parentheses indicate variant frequency in %, while values in parentheses indicate allele count/total number of chromosomes sampled. Null values indicate variants that 
were screened for but not identified, while - indicates unscreened variants. Total frequency is reported regardless of screening method employed. Ethnicities described here are descriptions 
obtained from associated literature.

https://doi.org/10.1007/s10198-014-0621-5 
https://doi.org/10.1007/s10198-014-0621-5 
https://www.bcg.com/publications/2011/health-care-payers-providers-public-sector-value-based-health-care-interactive.aspx
https://www.bcg.com/publications/2011/health-care-payers-providers-public-sector-value-based-health-care-interactive.aspx
https://doi.org/10.1016/s1569-1993(08)60436-1


627       August 2018, Vol. 108, No. 8

IN PRACTICE

13.	 Bilton D, Doull I, Brownlee K, et al. UK CF Registry: Annual Data Report 2011. Bromley, Kent: Cystic 
Fibrosis Trust, 2013:1-5.

14.	 Stewart C, Pepper MS. Cystic fibrosis on the African continent. Genet Med 2016;18(7):653-662. 
https://doi.org/10.1038/gim.2015.157

15.	 Stewart C, Pepper MS. Cystic fibrosis in the African diaspora. Ann Am Thorac Soc 2017;14(1):1-7. 
https://doi.org/10.1513/annalsats.201606-481fr

16.	 Mutesa L, Bours V. Diagnostic challenges of cystic fibrosis in patients of African origin. J Trop Pediatr 
2009;55(5):281-286. https://doi.org/10.1093/tropej/fmp064

17.	 Masekela R, Zampoli M, Westwood AT, et al. Phenotypic expression of the 3120+1G>A mutation in 
non-Caucasian children with cystic fibrosis in South Africa. J Cyst Fibros 2013;12(4):363-366. https://
doi.org/10.1016/j.jcf.2012.11.003

18.	 Goldman A, Graf C, Ramsay M. Molecular diagnosis of cystic fibrosis in South African populations. 
S Afr Med J 2003;93(7):518-519.

19.	 Popejoy AB, Fullerton SM. Genomics is failing on diversity. Nature 2016;538(7624):161-164. https://
doi.org/10.1038/538161a

20.	 Alper ÖM, Wong L-JC, Young S, et al. Identification of novel and rare mutations in California Hispanic 
and African American cystic fibrosis patients. Hum Mutat 2004;24(4):353. https://doi.org/10.1002/
humu.9281

21.	 Sugarman EA, Rohlfs EM, Silverman LM, Allitto BA. CFTR mutation distribution among 
U.S. Hispanic and African American individuals: Evaluation in cystic fibrosis patient and 
carrier screening populations. Genet Med 2004;6(5):392-399. https://doi.org/10.1097/01.gim.​
0000139503.22088.66

22.	 Denter M, Ramsay M, Jenkins T. Cystic fibrosis: Part I. Frequency of the delta F508 mutation in South 
African families with cystic fibrosis. S Afr Med J 1992;82(1):7-10.

23.	 Herbert JS, Retief AE. The frequency of the delta F508 mutation in the cystic fibrosis genes of 71 
unrelated South African cystic fibrosis patients. S Afr Med J 1992;82(1):13-15.

Table 3. Summary of available CF variant data derived from diagnosed CF and/or suspected SA CF patients*

Ethnicity† Ch
r t

es
te

d.
 n

Δ
F5

08

31
20

+1
G

>A

94
G

>T

G
12

49
E

N
13

03
K

10
78

de
lT

17
17

-1
G

 >
A

21
83

A
A

>G

21
83

de
lA

A

27
89

+5
G

>A

31
96

de
l5

4

32
72

-2
6A

>G

36
59

de
lC

39
4d

el
T

T

62
1+

1G
>T

c.
54

-
11

61
_c

.1
64

+1
60

3d
el

28
75

A
45

5E

R
ef

er
en

ce

Black 2 ? ? 0.5 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 27
Black 12 ? 0.08 0.08‡ ? ? ? ? ? ? ? ? ? ? ? ? 0.08 ? 28
Black 6 0 0.67 0 0.17 0 0 0 0 0 0 0.17 0 0 0 0 0 0 25
Black 18 ? 0.11 - 0 - - - - - - - - - - - - - 26
Black 28 0 0.46 0.04§ 0.04¶ - - - - 0.04§ - 0.04¶ - - - - - - 18ǁ

Black 36 - - - - - - - - - - - - - - - 0.03** - 29
Black and 
mixed

60 - 0.73 - - - - - - - - - - - - - - - 17

Mixed 28 0.54 - - - - - - - - - - - - - - - - 23
Mixed 86 0.50 0.17 0 0 0 0 0 0 0 0 0 0.01 0 0 0 - 0 18ǁ

Mixed 48 - - - - - - - - - - - - - - - 0 - 29
White 114 0.82 - - - - - - - - - - - - - - - - 23
White 162 0.81 - - - - - - - - - - - - - - - - 23
White 402 0.76 0.005 0 0 0.01 0 0.002 0 0 0.002 0 0.04 0.002 0.037 0.002 - 0 18ǁ

Not stated 14 - - - - 0 - - - - - - - - - - - - 24

Ethnicity† Ch
r t

es
te

d.
 n

E6
0X

Δ
I5

07

G
54

2X

G
55

1D

Q
49

3X

R
11

62
X

R
11

7H

R
34

7P

R
55

3X

S1
25

1N
S5

49
N

W
12

82
X

44
4d

el
A

A
55

9T

D
12

70
N

S1
25

5X

38
49

+1
0k

bC
>T

R
33

4W

R
ef

er
en

ce

Black 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 27
Black 12 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 28
Black 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25
Black 18 - - - - - - - - - - - - 0 0 0.11 0 - - 26
Black 28 - - - - - - - - - - - - - - - - - - 18ǁ

Black 36 - - - - - - - - - - - - - - - - - - 29
Black and 
mixed 60

- - - - - - - - - - - - - - - - - - 17

Mixed 28 - - - - - - - - - - - - - - - - - - 23
Mixed 86 0 0 0.02 0.02 0 0.01 0 0 0 0 0 0 - - - - - - 18ǁ

Mixed 48 - - - - - - - - - - - - - - - - - - 29
White 114 - - - - - - - - - - - - - - - - - - 23
White 162 - - - - - - - - - - - - - - - - - - 23
White 402 0 0 0.02 0.01 0.002 0 0.002 0 0.01 0 0.002 0.01 - - - - - - 18ǁ

Not stated 14 - - - - - - - - - - - - - - - - - - 24

CF = cystic fibrosis; SA = South African; Chr tested, n = number of chromosomes sampled in a study (sample size); CFTR = cystic fibrosis transmembrane conductance regulator.
*Variant frequencies are indicated within the table. Null values indicate variants that were screened for but not identified, - indicates that variant screening was not performed, while ? indicates an inability to 
discern, from the literature, whether or not variant screening was performed.
†Ethnicity, as reported in each of the described publications, is represented here.
‡Previously reported by Romey et al.[27]

§Previously reported (CFTR mutation database: http://www.genet.sickkids.on.ca/cftr/app).
¶Previously reported by Carles et al.[25]

ǁGoldman et al.[39] (2001) is not reflected in this table in order to avoid potential duplication of data from those reported in Goldman et al.[18] (2003).
**Previously reported by Des Georges et al.[28]

https://doi.org/10.1513/annalsats.201606-481fr 
https://doi.org/10.1016/j.jcf.2012.11.003 
https://doi.org/10.1016/j.jcf.2012.11.003 
https://doi.org/10.1038/538161a 
https://doi.org/10.1038/538161a 
https://doi.org/10.1002/humu.9281 
https://doi.org/10.1002/humu.9281 
https://doi.org/10.1097/01.gim. 0000139503.22088.66 
https://doi.org/10.1097/01.gim. 0000139503.22088.66 


628       August 2018, Vol. 108, No. 8

IN PRACTICE

24.	 Osborne L, Santis G, Schwarz M, et al. Incidence and expression of the N1303K mutation of the cystic 
fibrosis (CFTR) gene. Hum Genet 1992;89(6):653-658. https://doi.org/10.1007/bf00221957

25.	 Carles S, des Georges M, Goldman A, et al. First report of CFTR mutations in black cystic fibrosis 
patients of southern African origin. J Med Genet 1996;33(9):802-804. https://doi.org/10.1136/
jmg.33.9.802

26.	 Padoa C, Goldman A, Jenkins T, Ramsay M. Cystic fibrosis carrier frequencies in populations of 
African origin. J Med Genet 1999;36(1):41-44.

27.	 Romey M-C, Guittard C, Carles S, Demaille J, Claustres M, Ramsay M. First putative sequence 
alterations in the minimal CFTR promoter region. J Med Genet 1999;36(3):263-264.

28.	 Des Georges M, Guittard C, Templin C, et al. WGA allows the molecular characterization of a novel 
large CFTR rearrangement in a black South African cystic fibrosis patient. J Mol Diagn 2008;10(6):544-
548. https://doi.org/10.2353/jmoldx.2008.080028

29.	 De Carvalho CL, Ramsay M. CFTR structural rearrangements are not a major mutational mechanism 
in black and coloured southern African patients with cystic fibrosis. S Afr Med J 2009;99(10):724.

30.	 Nshimyumukiza L, Bois A, Daigneault P, et al. Cost effectivness of newborn screening for cystic 
fibrosis: A simulation study. J Cyst Fibros 2014;13(3):267-274. https://doi.org/10.1016/j.jcf.2013.10.012

31.	 Brice P, Jarrett J, Mugford M. Genetic screening for cystic fibrosis: An overview of the science and the 
economics. J Cyst Fibros 2007;6(4):255-261. https://doi.org/10.1016/j.jcf.2007.02.002

32.	 Jack D, Bell S, Bye P, et al. Cystic fibrosis in Australia: 15th Annual Report from the Australian Cystic 
Fibrosis Data Registry. Baulkham Hills, NSW: Cystic Fibrosis Australia, 2012:1-44.

33.	 Noordhoek-van der Staay JJ, Koppelman GH, Kraan J, et al. Dutch Cystic Fibrosis Registry: Report on 
the year 2012. Baarn, The Netherlands: Nederlandse Cystic Fibrosis Stichting, 2013:1-33.

34.	 Accurso FJ, Sontag MK, Wagener JS. Complications associated with symptomatic diagnosis in infants 
with cystic fibrosis. J Pediatr 2005;147(3):S37-S41. https://doi.org/10.1016/j.jpeds.2005.08.034

35.	 Campbell PW, White TB. Newborn screening for cystic fibrosis: An opportunity to improve care and 
outcomes. J Pediatr 2005;147(3):S2-S5. https://doi.org/10.1016/j.jpeds.2005.08.016

36.	 Van der Ploeg C, van den Akker-van Marle M, Vernooij-van Langen A, et al. Cost-effectiveness of 
newborn screening for cystic fibrosis determined with real-life data. J Cyst Fibros 2015;14(2):194-202. 
https://doi.org/10.1016/j.jcf.2014.08.007

37.	 Pentz A, Coetzee O, Masekela R, Green RJ. The impact of chronic pseudomonal infection on 
pulmonary function testing in individuals with cystic fibrosis in Pretoria, South Africa. S Afr Med J 
2014;104(3):191-194. https://doi.org/10.7196/SAMJ.7222

38.	 Masekela R, Olorunju S, Green RJ, Magidimisa NT. Lung function decline is accelerated in 
South Africans with cystic fibrosis. S Afr Fam Pract 2016;58(1):24-27. https://doi.org/10.1080%
2F20786190.2015.1078156

39.	 Goldman A, Claustres M, Guittard C, et al. The molecular basis of cystic fibrosis in South Africa. Clin 
Genet 2001;59(1):37-41. https://doi.org/10.1034/j.1399-0004.2001.590106.x

40.	 Goodwin S, McPherson JD, McCombie WR. Coming of age: Ten years of next-generation sequencing 
technologies. Nat Rev Genet 2016;17(6):333-351. https://doi.org/10.1038/nrg.2016.49

41.	 Schlebusch CM, Lombard M, Soodyall H. MtDNA control region variation affirms diversity and 
deep sub-structure in populations from southern Africa. BMC Evol Biol 2013;13(1):1-21. https://doi.
org/10.1186/1471-2148-13-56

42.	 Ramsey BW, Nepom GT, Lonial S. Academic, foundation, and industry collaboration in finding new 
therapies. N Engl J Med 2017;376(18):1762-1769. https://doi.org/10.1056/nejmra1612575 

Accepted 28 March 2018.

https://doi.org/10.1136/jmg.33.9.802 
https://doi.org/10.1136/jmg.33.9.802 
https://doi.org/10.1080%2F20786190.2015.1078156 
https://doi.org/10.1080%2F20786190.2015.1078156 
https://doi.org/10.1034/j.1399-0004.2001.590106.x 
https://doi.org/10.1186/1471-2148-13-56 
https://doi.org/10.1186/1471-2148-13-56 

