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Malaria transmission in South Africa (SA) is restricted to the north-
eastern parts of KwaZulu-Natal (KZN), Limpopo and Mpumalanga 
provinces. Satisfactory progress in reducing the malaria disease burden 
has been recorded in these malaria-endemic areas, and the incidence 
of malaria is currently low. Limpopo presents the highest burden of 
malaria in SA, with an incidence ranging from 1.7 to 2.4 cases per 
1 000 population at risk, while KZN has the lowest burden of disease 
(0.01 - 0.10 cases per 1 000 population at risk).[1-3] SA aims to eliminate 
malaria by the year 2020 and prevent the resurgence of malaria 
transmission in subsequent years.[2] There is therefore a pressing need 
to develop robust and reliable predictive models that can strengthen 
the public health service in decision-making for effective targeted 
strategies to combat and eliminate malaria transmission.

The development of predictive models is a vital part of malaria 
surveillance, enabling policy makers and public health workers to 
project the future occurrence of the disease and act proactively.[4] One 
approach to developing a malaria predictive model is to use historical 
malaria case data and employ analytical predictive models such as 
mathematical modelling, a machine-learning approach (artificial 
neural networks) and statistical methods (generalised linear models 
and Seasonal Autoregressive Intergrated Moving Average (SARIMA) 
models). An understanding of the assumptions underlying a 
predictive model and its advantage(s) and disadvantage(s) is vital 
when developing a forecast model.[5] The SARIMA approach can 
exhibit temporal trends such as seasonality and autocorrelation 
(which is a correlation of a time series with its own past and future 
values)[6] that are actualised by eliminating high-frequency noise 
in the data. Furthermore, owing to the model’s ability to perform 
automated model determination over a time series, predictions 
can be said to be reliable if longer time series data are employed. 
The formulated models are easy to interpret in a retrospective 

study. [5] Nevertheless, the formulation of the models requires general 
mathematical and statistical skills, and an understanding of a 
relevant statistical package/software for the execution of analysis. 
The required mathematical and statistical skills are not limited to 
trigonometry, complex numbers, calculus, linear regression (multiple 
regression and weighted least square) and basic probability.[7] The 
analysis can be implemented using either an open-source (free) 
statistical package (such as R statistics or Python) or a licensed 
package (Stata, MATLAB, SAS, MiniTab or SPSS).

Objectives
In view of the need for KZN to enhance malaria control and 
elimination efforts and ‘explore’ the epidemiological potential of the 
SARIMA time series model in that regard, this study was designed to 
develop a SARIMA temporal model using long-term historical malaria 
case data and predict malaria monthly cases using R statistical software 
version 3.2.3 (R Foundation for Statistical Computing, Austria).

Methods
Study area
Three district municipalities in KZN, uMkhanyakude, uThungulu and 
Zululand, are malarious areas and were included in the study. The study 
areas are bordered by the countries of Swaziland and Mozambique to 
the north, and the Indian Ocean stretching from the east down to the 
southeast (Fig. 1). The province has a subtropical climate and most 
malaria cases occur during the rainy months from October to May, 
usually with a seasonal peak in January and March.[8,9]

Malaria data
We used confirmed monthly malaria cases including all age groups 
from January 2005 to December 2014, obtained from the KZN 
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Malaria Control Programme. A malaria case is a person whose 
blood smear tested positive to Plasmodium after undergoing a rapid 
diagnostic test or slide microscopy at a health facility.[10] Since 1956 
it has been a legal requirement to notify malaria cases to the relevant 
health authorities in SA.[11] Confirmed malaria cases at health 
facilities in the malarious provinces in SA are reported by telephone 
to the relevant district health office and subsequently reported to 
the provincial malaria control programme. At the provincial malaria 
control programme, the malaria control worker collects and inputs 
information relating to the malaria case into the malaria information 
system. The information includes patient demographics, the health 
facility where the case was reported, symptoms, malaria test results, 
diagnosis and treatment administered.[8,12]

No ethical approval for the study was required.

Statistical analysis
The analytical approach to this study is bounded by the Box-Jenkins 
SARIMA model. The SARIMA model combines non-seasonal and 
seasonal components, and can be specified as SARIMA (p,d,q) × 
(P,D,Q)s, where p, d and q refer to the orders of the non-seasonal 
autoregressive (AR), non-seasonal differencing and non-seasonal 
moving average (MA) parts of the model. P, D and Q refer to the 
orders of the seasonal AR, seasonal differencing and seasonal MA 
parts of the model, and s is the length of the seasonal period. The 
AR process accounts for previously observed values up to a specified 
maximum lag, plus an error term. The process of differencing is 
referred to as the integration part that accounts for stabilisation of 
the data by removing seasonality or trend, while the MA process 
accounts for previous error terms, making forecasting easier. The 
algebraic form of the SARIMA model[13] is given as:

where Xt = data series,  = random error (with mean zero 
and variance ), B = backward shift operator, 𝜙 = coefficient 
non-seasonal autoregressive, 𝜃 = coefficient non-seasonal moving 
average, 𝛷 = coefficient seasonal autoregressive,  = coefficient 
seasonal moving average,  = difference operator, with d order of 
differencing, and  = seasonal difference operator, with D seasonal 
order of differencing and s length of the seasonal period.

A SARIMA (p,d,q)(P,D,Q)12 model was constructed using monthly 
malaria case data from January 2005 to December 2013 and a forecast 
of malaria cases from January 2014 to December 2014, following the 
steps below.

Step 1: Transformation of time series data and model identification
The power transformation known as the Yeo-Johnson transformation 
was employed on the time series to stabilise the variance, while 
SARIMA non-seasonal and seasonal differencing were conducted 
to achieve stationarity of the time series by eliminating the trend 
and seasonality. From the non-seasonal and seasonal differenced 
data, the non-seasonal and seasonal components of the model were 

formulated by examining their autocorrelation function (ACF) 
and partial autocorrelation function (PACF). The ACF and PACF 
were used to determine the degree of differencing and appropriate 
autoregressive and moving average terms.

Step 2: Parameter estimation
Parameters of the model in step 1 were estimated to verify that all the 
parameters in the plausible model were significant.

Step 3: Model validation
To test for the adequacy of the selected SARIMA model, we used the 
residuals of the fitted model to find the ACF plot of the residuals and 
the Box-Ljung test. The Q-Q plot and Shapiro-Wilk test were used to 
test for normality of the residuals. If all the diagnostic test results are 
within acceptable limits, the SARIMA model in step 2 is appropriate.

Step 4: Forecasting
The selected SARIMA model in step 3 was used to forecast malaria 
cases from January 2014 to December 2014. The reported malaria 
cases for 2014 were used to validate the forecast.

Results
Model identification
The time series data cover 120 months, from January 2005 to 
December 2015, and depict notable seasonality and a downward 
trend of malaria cases, as shown in Fig. 2 A.

The Yeo-Johnson transformation method and differencing were 
employed to stabilise the variance and eliminate the seasonal trend, 
respectively.

The Yeo-Johnson transformation suppressed the fluctuations, 
which in turn enhanced the normality of the data (Fig. 2 B). The 
ACF plot of the transformed malaria case data in Fig. 2 C depicts 
seasonality, which dies down slightly, while the PACF plot of the 
malaria case data in Fig. 2 D tails off after lag 1, and decays in sine-
wave fashion. In an initial attempt to remedy the non-stationarity of 
the time series (depicted in Fig. 2 B), and eliminate the trend and 
seasonality (indicated in the ACF plot in Fig. 2 C), non-seasonal 
differencing was employed.

In Fig. 3, A and B present the output of the monthly malaria cases 
after transformation and non-seasonal differencing. The ACF plot in 
Fig. 3 A indicates that seasonality is still evident (lags 7, 19 and 31). 

 

Fig. 1. Map of the study area. 
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Fig. 1. Map of the study area.
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We therefore employed seasonal differencing to eliminate the effect 
of seasonality in our model and to seek for a better model fit.

The non-seasonal component of our model was identified by 
examining the ACF and PACF plots (Fig. 3 A and B) of the 
transformed non-seasonal differenced malaria cases. The ACF values 
in Fig. 3 A decline steadily after 1 lag and the PACF (Fig. 3 B) decays 
exponentially in a sine-wave fashion. This suggests a moving average 
of order 1, resulting in an autoregressive moving average (0,1,1)12 

model (i.e. p = 0, d = 1 and q = 1).
In Fig. 3, C and D show the ACF and PACF plots of monthly 

malaria cases after transformation and seasonal differencing. In Fig. 
3 C, the ACF cuts off after 1 lag, which suggests a seasonal moving 
average MA (1) model, while the PACF plot (Fig. 3 D) declines 
after 3 lags, which suggests a seasonal autoregressive AR (3) model. 
Therefore, based on the non-seasonal differencing and seasonal 
differencing, seasonality was eliminated from the time series data 
and a stationary mean (i.e. D = 0) was achieved. This resulted in the 
identification of three plausible SARIMA models, SARIMA (0,1,1)
(3,1,1)12, SARIMA (0,1,1)(0,1,1)12, and SARIMA (0,1,1)(3,1,0)12.

Model testing and parameter estimation
The goodness-of-fit statistics employed were the Akaike information 
criterion (AIC), the Bayesian information criterion (BIC), log-
likelihood and the standard error. The model with the lowest BIC 
value and with a p-value <0.05 was selected as the best model fit. The 
BIC values are based on the likelihood function and the AIC.[6] The 

SARIMA (0,1,1)(0,1,1)12 model has the smallest BIC (Table 1) and all 
the estimates provided in Table 2 are significant. Therefore, based 
on the goodness-of-fit statistics (Table 1) and parameter estimation 
(Table 2), we identified the SARIMA (0,1,1)(0,1,1)12 model as the 
most suitable model for forecasting.

Model validation
This was done by verifying: (i) the ACF of the residuals to check for 
autocorrelation; and (ii) the normal probability plot of the residuals.

The ACF plot of residuals (Fig. 4, A) suggests that the residuals 
have a constant variance, and the autocorrelations were modelled 
out leaving only one significant value as indicated by the spike in lag 
19. Also, the Box-Ljung test results (χ2 = 60.499, df = 48, p-value = 
0.1064) revealed that the p-value exceeded 5%, implying that the 
model is adequate (i.e. there is no autocorrelation). The Shapiro-
Wilk test results for normality have a test statistic of W=0.98811 and 
p-value of 0.4595, and the Q-Q plot (Fig. 4, B) depicts some out liers 
on the tails, suggesting that the normality of the residuals is not 
rejected. We therefore proceeded to use the SARIMA (0,1,1)(0,1,1)12 
model for forecasting, since it provides a reasonable fit to the highly 
seasonal and non-seasonal time series data.

Forecasting
The selected SARIMA (0,1,1)(0,1,1)12 model was used to forecast 
monthly malaria cases from January 2014 to December 2014 
(Fig. 5).

The plot of the observed monthly malaria cases and predicted 
cases for 2014 (Fig. 6) shows that the values for monthly predicted 
cases tend to follow the reported values quite closely except in 
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Fig. 2. The original and the Yeo-Johnson transformed time series plots of monthly malaria 
cases in KwaZulu-Natal, 2005-2014. A): Original time series. B): The transformed time series. 
C): The ACF plot of the transformed time series. D): The PACF plot of the transformed time 
series. 
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Fig. 2. The original and Yeo-Johnson-transformed time series plots of 
monthly malaria cases in KwaZulu-Natal, 2005 - 2014. (A) Original time 
series. (B) Transformed time series. (C) ACF plot of the transformed time 
series. (D) PACF plot of the transformed time series. (ACF = autocorrelation 
function; PACF = partial autocorrelation function.)
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Fig. 3. ACF and PACF plots of monthly malaria cases in KwaZulu-Natal, 2005-2014 after 
Yeo-Johnson transformation and differencing. A): ACF plot of the transformed non-seasonal 
differenced malaria cases. B): PACF plot of the transformed non-seasonal differenced malaria 
cases. C): ACF plot of the transformed seasonal differenced malaria cases. D): PACF plot of 
the transformed seasonal differenced malaria cases. 
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Fig. 3. ACF and PACF plots of monthly malaria cases in KwaZulu-Natal, 
2005 - 2014, after the Yeo-Johnson transformation and differencing. (A) ACF 
plot of the transformed non-seasonal differenced malaria cases. (B) PACF 
plot of the transformed non-seasonal differenced malaria cases. (C) ACF 
plot of the transformed seasonal differenced malaria cases. (D) PACF plot of 
the transformed seasonal differenced malaria cases. (ACF = autocorrelation 
function; PACF = partial autocorrelation function.)

Table 1. Goodness-of-fit statistics of plausible SARIMA models

Statistic
SARIMA
(0,1,1)(3,1,1)12

SARIMA
(0,1,1)(0,1,1)12

SARIMA
(0,1,1)(3,1,0)12

AIC 202.77 199.6 208.28
BIC 218.1 207.26 221.02
LL –95.39 –96.8 –99.12

SARIMA = Seasonal Autoregressive Integrated Moving Average; AIC = Akaike 
information criterion; BIC = Bayesian information criterion; LL = log likelihood.



576       July 2018, Vol. 108, No. 7

RESEARCH

August, November and December, where 
pronounced differences were observed.

Discussion
Time series predictions are generated by 
models based on changes over time in 
previously observed values or historical 
datasets.[14] The SARIMA forecast model 
can serve as a useful tool for public health 
workers and epidemiologists. It can be 
applied as a malaria early-warning system 
and, can provide vital information to enable 
the relevant authority to act proactively.[14,15] 
This study shows how the SARIMA model 
(which is particularly relevant for a disease 
that exhibits seasonality) was employed 
in modelling and predicting malaria cases 
in a relatively low malaria transmission 
region, where targeted interventions are 
vital to strengthen KZN malaria control and 

elimination efforts. The model can provide 
information to support policy makers and 
public health efforts so that intervention 
resources can be provided and chanelled 
in a sustainable and effective way. It can 
also serve as a tool for providing relevant 
information to locals and visitors prior to 
high malaria transmission months. This in 
turn will be pivotal in transforming SA’s 
current malaria programme to elimination 
by 2020.

The epidemiological potential and func-
tionality (epidemiological studies, disease 
surveillance and forecasting) of the SARIMA 
time series have been explored by various 
authors in different capacities. [16-20] These 
authors ensured that the time series processes 
attained stationarity in the homogenous 
sense (stationary in its level) and variance, 
which are indispensable conditions  of 

a SARIMA model. This was done by 
carrying out the first differencing and the 
seasonal differencing, which results in a 
stationary time series by removing trends 
and seasonal effects. However, in instances 
where the variance of a time series trends 
downwards (or increases) as the level of 
the series decreases (or increases), the 
time series must be transformed before 
the analysis or differencing.[14] This will 
lead to a time series stationary in the 
homogenous sense and variance, and in 
turn improves and leads to the formulation 
of a better model fit.[14] Some studies 
employed log-transformation to achieve a 
stationary variance,[21-23] and this is the most 
commonly used transformation approach. 
Other studies employed Box-Cox power 
transformation,[24,25] which is valid for 
datasets containing positive variables. In 
this study, we employed a seldom-used 
power transformation known as the Yeo-
Johnson transformation because our time 
series systematically trended downwards 
and had zero values and values close to 
zero.[26]

Although malaria transmission in 
KZN is limited as a result of effective 
malaria control measures,[9,27-29] the SA 
National Department of Health still regards 
malaria as a significant disease owing to 
its propensity to cause an epidemic.[8,10] 
In SA, specific population groups are at 
higher risk of contracting malaria. They are 
infants and children aged <5 years living in 
localities of stable malaria transmission, the 
elderly (>65 years old), people living with 
HIV/AIDS, non-immune pregnant women, 
semi-immune pregnant women living in 
high malaria transmission localities, semi-
immune HIV-infected pregnant women 
living in localities of stable transmission, 
non-immune travellers and migrants. [10] 
Nevertheless, the entire population is vul-
nerable to malaria epidemics owing to little 
or no immunity.[10] To avert an epidemic, 
SA has in place an outbreak threshold of 
confirmed cases at districts and provinces 
endemic to malaria, and health facilities 

A)  B)   

 

Fig. 4. Plots of residuals of the selected SARIMA (0,1,1)(0,1,1)12 model. A): The ACF plot. 
B): The Q-Q plot  
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plot. (SARIMA = Seasonal Autoregressive Intergrated Moving Average; ACF = autocorrelation function.)

 
Fig. 5. Observed malaria cases from January 2005-December 2013 and predicted malaria 
cases from January 2014 to December 2014. 
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Fig. 5. Observed malaria cases from January 2005 to December 2013 and predicted malaria cases from 
January 2014 to December 2014.

Table 2. Parameter estimation
SARIMA (0,1,1)(3,1,1)12 SARIMA (0,1,1)(0,1,1)12 SARIMA(0,1,1)(3,1,0)12

Type Coef. SE of coef. p-value Coef. SE of coef. p-value Coef. S.E of coef. p-value
MA1 –0.7029 0.0803 0.0000 –0.7156 0.0785 0.0000 –0.7274 0.0767 0.0000
SAR1 0.2003 0.1189 0.0460 - - - –0.5261 0.1083 0.0000
SAR2 –0.0002 0.1197 0.4995 - - - –0.3182 0.1186 0.0037
SAR3 –0.0862 0.1328 0.2582 - - - –0.1561 0.1265 0.1087
SMA1 –1.0000 0.3738 0.0037 –0.7272 0.1316 0.0000 - - -

SARIMA = Seasonal Autoregressive Integrated Moving Average; MA = non-seasonal moving average; SAR = seasonal autoregressive; SMA = seasonal moving average; SE = standard error;  
coef. = coefficient.
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located in these areas. When the threshold is reached or exceeded, 
reactive measures are taken by the relevant malaria divisions.[8] 
The malaria control and elimination efforts needed will therefore 
require scaling up and revising of the epidemic preparedness and 
response strategy.

In addition to our SARIMA model, further studies should be 
conducted utilising either epidemiological or entomological data or a 
combination of both, with environmental and socioeconomic malaria 
triggers at a fine scale to delineate the intervention resources needed. 
Furthermore, conducting epidemiological research, and studies in 
a particular setting employing different parameters, mechanisms 
or possible confounders, can inform us on the deficiencies in our 
knowledge of malaria disease in that study area. This could result 
in the identification of unanswered questions and loopholes crucial 
to model reliability, which can be bridged by either incorporating 
more variables or eliminating certain variables. Nevertheless, without 
practical applications of developed models, we will not be informed 
about the reliability of the models and how they can be improved. It is 
also important to bring relevant stakeholders (researchers, statistical 
analysts, the South African Weather Service, doctors, public health 
workers, epidemiologists, entomologists and policy makers) together 
to reshape the malaria elimination strategy so that reliable and 
operational malaria case prediction models can be generated. Such 
multidisciplinary collaboration will also enable reliable malaria 
predictors and accurate hotspots of malaria transmission to be 
identified.[30] In addition, a reliable and direct means of accessing 
and sharing information among the relevant stakeholders is of the 
utmost necessity.

Study limitations
The weakness of this study is that it attempted to develop a single 
model for the entire malarious area of KZN. Separate models 
for each of the district municipalities could provide an in-depth 
assessment of the malaria trends across the district, which in turn 
might help identify possible differences in the implementation of 
prevention measures, patients’ seeking behaviours and migration 
of people. The structuring of our data and the mode of the 
forecasting (using monthly data and forecasting) may be responsible 
for the overestimated and underestimated monthly forecast observed. 
Conducting daily data analysis could result in improved model fit 
and daily forecasts, which could then be aggregated into weekly 
and monthly forecasts. The univariate analysis approach employed 
in this study could be another reason for the overestimated and 
underestimated forecasts. The incorporation of independent-variable 

time series into the SARIMA model (multivariate SARIMA model) 
over a longer time frame could improve the model fit and the forecast 
if the exogenous factors responsible for trend, seasonality and outliers 
are incorporated into the model.

Conclusions
The SARIMA forecast model is a valuable tool that has the potential 
for malaria early warning and early detection in KZN, SA. It can 
provide reliable information to the relevant authority to act pro-
actively, because the values of the malaria forecast from the best 
fit SARIMA (0,1,1)(0,1,1)12 model fitted closely with the values of 
the reported malaria cases. Nevertheless, the practical application 
of the generated model is encouraged. Furthermore, studies that 
employ daily data and incorporate possible malaria transmission 
risk factors and confounders in multivariate time-series models are 
recommended.
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