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Significant advances in molecular technology expanded the scope of 
genetic testing, from diagnostic confirmation and carrier screening 
of mendelian disorders, to risk management of complex polygenic 
and multifactorial disorders. A review by Pembrey and Beighton[1] on 
the molecular techniques that were available 30 years ago witnessed 
the transition from single- to multi-gene testing and next-generation 
sequencing (NGS) as arguably the most significant technological 
advancement in genetics to date. 

The decreasing cost of microarray analysis and NGS, coupled with 
the use of sophisticated computational algorithms, enables genetic 
subtyping of complex disorders and identification of therapeutic 
targets at the same time. Whole genome/exome sequencing (WGS/
WES) can now be performed alongside clinical evaluation as an 
integral part of personalised medicine.[2]  This new healthcare model 
may be particularly useful  when multiple aetiologies cause the same 
medical disorder, when the same disorder has multiple outcomes, 
and when response to treatment is unpredictable based on the 

disease signs and symptoms alone.[3]  However, lack of well-defined 
pre-screen algorithms and the ability to interpret complex genomic 
information are important barriers to clinical implementation. To 
bridge this gap, a pathology-supported genetic testing (PSGT) service 
was developed at the interface between the laboratory and clinical 
practice.[4] This enabled the establishment of a genomics database 
(freely available to registered users at www.gknowmix.org) for clinical 
interpretation and comparative effectiveness studies. Within a family 
context, PSGT combines medical history, environmental factors 
and pathology test results for interpretation of genetic findings 
across different assay platforms. Providing a patient report, as 
contextualised in Table 1, helps to determine whether any abnormal 
pathology or medication side-effects/failure may be caused by genetic 
or environmental risk factors, or both. 

In this study, the incorporation of genomics into an existing 
body of knowledge is described, to provide a framework for NGS 
beyond the limited scope of single-gene testing. The application 
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Table 1. Matrix for data integration and semi-automated report generation using PSGT to identify risk factors underlying different 
disease subtypes in complex disorders
Disease pathway analysis Family medical history and genetic susceptibility Environmental factors and treatment response

Clinical risk profile Contribution of genetic variants implicated in the 
dysfunctional regulation of key metabolic pathways across the 
disease spectrum to clinical presentation

Consideration of lifestyle intervention that may 
ameliorate risk for expression of disease-associated 
phenotypes in genetically susceptible individuals

Pathology test results Pathological indicators (biochemistry, histology) which 
may reflect gene-environment interactions as biological 
intermediates

Monitoring of relevant pathological indicators/
biochemical test results in relation to treatment 
response and side-effect profile
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of PSGT in this context is explained in relation to examples of 
medical conditions, founder mutations, functional single nucleotide 
polymorphisms (SNPs) and pathology test results found to be 
suitable for inclusion or consideration as part of a pre-screen step 
before embarking on WGS/WES. 

Single-gene testing of founder 
mutations and SNPs
Knowledge of the genetic structure of a population is very important 
for the development of diagnostic and screening tests. A founder 
gene effect may occur in some historically isolated populations that 
descended from a small gene pool. This phenomenon may account 
for the high frequency of certain cardiovascular, neurological, 
metabolic and intestinal conditions reported in South Africa (SA). [5]  
While disease penetrance is virtually 100% in the case of Huntington’s 
disease, most genetic disorders show variable clinical expression. 
In patients with familial hypercholesterolaemia (FH) and variegate 
porphyria (VP), for example, clinical variability complicates accurate 
diagnosis of these autosomal dominant diseases, even in family 
members with the same founder mutation. Cascade screening is 
recommended for mutation-positive cases to improve diagnostic 
reliability in relation to gene-diet (nutrigenetics) and gene-drug 
(pharmacogenetics) interaction that may affect the same disease 
pathways.  

Elucidation of the spectrum of high-penetrance mutations 
which cause FH in the majority of affected SA patients led to the 
development of a reverse-hybridisation strip assay for cardiovascular 
risk management. [6] Testing of the mutation panel underlying 
the high prevalence of FH in SA caused by a founder effect,[7] 

recurrent mutational events,[8] and population admixture,[9] may also 
be combined with apolipoprotein E (APOE) genotyping, to help 
distinguish between polygenic and monogenic FH.[10] PSGT provides 
an ideal framework for APOE genotyping in dyslipidaemics with a 
positive family history of late-onset Alzheimer’s disease, incorporated 
as a novel component of the pre-screen algorithm developed by 
Lückhoff et al.[11] Physical activity was shown to attenuate the 
cholesterol-raising effect of the APOE e-4 allele, recognised as a poor 
target for lipid-lowering pharmacotherapy in international studies. 
This SNP occurs in 30 - 40% of the general population and affects 
lipid levels in a similar manner across ethnic groups.

While early detection, accurate diagnosis and optimal treatment 
of FH are priorities in SA due to the strong link with premature 
heart attacks, prevention of deep vein thrombosis (DVT) is equally 
important. Beighton and Richards[12] were the first to identify 
prolonged immobility during long-distance air travel as a potential 
environmental trigger for DVTs in individuals at increased risk for 
cardiovascular disease (CVD). In 1994, the factor V Leiden mutation 
(1691G>A) was identified as the most common genetic risk factor 
for DVT, causing a 7- to 80-fold increased risk for thrombosis in 
the presence of one or two copies of the faulty gene, respectively. 
Co-inheritance with the prothrombin mutation (20210G>A) found to 
increase the risk for venous thrombosis at least 40-fold, provided one 
of the first examples of an epistatic effect. While DVT is a relatively 
rare event in the general population (~1 in 1 000), both the factor 
II 20210G>A (2 - 3%) and factor V 1691G>A (3 - 5%) mutations 
occur in more than 1% of the Caucasian population. These SNPs are 
virtually absent in Africans and Asians, a finding that may contribute 
to differences in disease patterns of thrombophilia-related conditions 
among world populations. Identification of the target group most 
likely to benefit from SNP genotyping furthermore relates to the wide 
spectrum of environmental triggers, biochemical abnormalities (e.g. 
dyslipidaemia, hyperhomocysteinaemia) and medical conditions 

(e.g. pulmonary embolism, recurrent pregnancy loss) associated 
with abnormal blood clotting. The factor V Leiden mutation is also a 
pharmacogenetic marker that can be used to recommend avoidance 
of certain forms of hormone therapy as well as smoking and obesity, 
in both heterozygotes and homozygotes.[13]  

From single- to multi-gene testing
In 2004, the World Health Organization defined international 
standards for genetic testing, and a DNA test for the factor V 
Leiden mutation was the first to be approved for clinical use under 
these guidelines. At this important time in the history of human 
genetics, ethical concerns about genetic testing in SA were addressed 
in relation to a code of conduct compiled for the life insurance 
industry. [14] Analysis of thrombotic risk factors, individually or as 
part of a CVD multi-gene assay,[10] were evaluated in relation to: 
(i)  the prevalence and penetrance of gene variants included in the test 
panel; and (ii) the potential benefits of preventative steps based on 
the findings. As a general rule, genetic testing will not have a negative 
effect when performed on the basis of well-defined selection criteria. 

Owing to the increased risk of thrombophilia and cardiac 
complications with use of chemotherapy and hormonal therapy, 
the CVD multi-gene assay may also be applicable in breast cancer 
patients. Bardia et al.[15] reported that the predicted 10-year risk 
for CVD equals or exceeds breast cancer recurrence risk and urged 
physicians to offer early screening and cardiac prevention strategies 
for cancer survivors. CVD risk factor screening in 164 SA breast 
cancer patients showed a significantly higher body mass index 
(BMI) in oestrogen receptor (ER)-positive v. ER-negative cases, after 
adjustment for age, ethnicity and family history of cancer (p<0.05). [16] 
ER status and obesity were also linked to genetic variation in the 
folate-homocysteine methylation pathway, which provided valuable 
insight into the interplay between germline mutations and tumour 
pathology.

Understanding the molecular characteristics of both tumour and 
host genetics is critical to establishing their relationship with drug 
response and epigenetic processes underlying the development of 
cancer and many other chronic diseases. Nearly 100 genes have been 
identified that, if mutated, will convert a normal breast cell into a 
breast cancer cell. The influence of germline mutations on tumour 
pathology is particularly strong between mutations in the BRCA1 
gene and the basal-type breast cancer. This subtype usually tests 
negative for ER, progesterone receptor (PR) and human epidermal 
growth factor receptor-2 (HER2), and is, therefore, called triple-
negative breast cancer (TNBC). ER, PR and HER2 status provide 
useful parameters for selection of patients eligible for transcriptional 
gene profiling, as evidenced in SA breast cancer patients referred 
for microarray analysis. Pohl et al.[17] demonstrated a change in 
chemotherapy treatment in 52% of SA patients with early-stage breast 
cancer by using a newly developed microarray pre-screen algorithm 
to facilitate risk assessment beyond standard pathology and clinical 
prediction tools. 

While detection of germline mutations in the BRCA1/2 genes 
is associated with a high risk for local or contralateral recurrence 
of breast cancer, microarray-based assessment of tumour genetics 
determines risk of distant recurrence (70-gene profile); and 
simultaneously enables subtyping of breast cancer into four treatment 
groups (80-gene profile): Luminal A, Luminal B, HER2-enriched and 
the basal-type. Owing to the ability of microarrays to distinguish 
between HER2-positive breast cancer of the Luminal B and HER2-
enriched subtypes, our testing algorithm has now been extended 
to help resolve equivocal, borderline and contradictory pathology 
results prior to selection of patients for trastuzumab therapy. The 



S116       June 2016, Vol. 106, No. 6 (Suppl 1)

THE NEW MILLENNIUM

70-gene MammaPrint test has level A1 evidence for clinical utility 
and was cleared by the Food and Drug Administration (FDA) for 
use on fresh tumour biopsies (2007) and formalin-fixed paraffin-
embedded (FFPE) tissue (2015).

Conventional medicine aims to diagnose and treat an existing 
disorder, while the purpose of personalised medicine is to predict 
the outcome of complex disorders and prevent them from recurring 
or developing in the first place. PSGT aims to integrate both medical 
models into a single genomics application. This approach has proven 
useful as a screening step to overcome some of the limitations of WES 
previously reviewed.[4]

From PSGT to exome sequencing
WES provides the opportunity not only to look into exclusive disease-
specific genetic alterations, but also common molecular pathogenic 
mechanisms. However, poor coverage of repetitive or GC-rich gene 
regions and exclusion of promoters and other regulatory signals that 
may be located in introns are important limitations. To evaluate the 

depth of coverage in the case of CYP2D6 genotyping considered 
applicable across clinical entities,[16] we compared WES with the 
results obtained using real-time polymerase chain reaction (PCR) 
technology. Table 2 shows the evaluation of twelve SNPs in four 
unrelated individuals. These include the index case (sample  4) 
of a family with three medical conditions previously analysed 
at the clinical, pathology and genetic level:[18] multiple sclerosis, 
hereditary haemochromatosis, and porphyria that may be triggered 
by iron dysregulation or drugs affecting CYP2D6 activity. Inadequate 
coverage (<20x) of the most common variant CYP2D6*4 was evident 
in this patient (poor metaboliser), as well as samples 2 (intermediate 
metaboliser) and 3 (extensive metaboliser). Results obtained for 
this allele using the Taqman Drug Metabolism Genotyping Assay 
(Thermo Scientific, USA) were compared with WES in Table 2 for 
the four samples tested. Quantitative real-time PCR (qRT-PCR) 
revealed heterozygosity for CYP2D6*5, which results in hemizygosity 
at the CYP2D6 locus and explains the apparent homozygosity for 
the variants defining alleles *4 and *10 in case 4. For heterozygous 

Table 2. CYP2D6 genotypes analysed by WES, with coverage given below genotypes (CYP2D6 alleles listed according to position 
on chromosome 22)
Allele name dbSNP ID Ref MAF† Enzyme activity‡ Case 1 Case 2 Case 3 Case 4

CYP2D6*41 rs28371725 C 0.0934 Decreased CC CC CC CC

119 88 69 128

CYP2D6*7 rs5030867 T 0 Absent TT TT TT TT

91 91 38 42

CYP2D6*2 rs16947 G 0.343 Decreased GG AG AG GG

90 82 (41/41) 34 (22/12) 31

CYP2D6*9 rs5030656 Ins 0.0258 Decreased Ins Ins Ins Ins

91 61 23 11

CYP2D6*3 rs4986774 T 0.0254 Absent TT TT TT TT

70 42 41 38

CYP2D6*4 rs3892097 C 0.186 Absent TT§ CT§ CC§ TT§

TT¶ TT¶ CC¶ CT¶

23 3 15 18 
(4/14)

CYP2D6*5 deletion Ins 0.04 Absent Ins|| Ins|| Ins|| Ins/del||

- - - -

CYP2D6*8 rs5030865 C 0 Absent CC CC CC CC

60 45 43 22

CYP2D6*6 rs5030655 A 0.0199 Absent AA AA AA AA

63 46 37 18

CYP2D6*29 rs61736512 C 0 Decreased CC CC CC CC

65 40 32 20

CYP2D6*17 rs28371706 G 0.002 Decreased GG GG GG GG

141 223 41 64

CYP2D6*10  rs1065852 G 0.202 Decreased AA AG GG AA

263 113 (49/64) 107 322

Phenotype PM IM EM PM
Ref = reference allele; EM = extensive metaboliser; IM = intermediate metaboliser; PM = poor metaboliser.
† Minor allele frequency (MAF) according to dbSNP.
‡ Enzyme activity according to Rebsamen et al.[20]

§ CYP2D6 rs3892097 genotype using the Taqman Drug Metabolism Genotyping Assay.
¶ CYP2D6 rs3892097 genotype using WES.
|| CYP2D6 deletion using quantitative real-time PCR (qRT-PCR).
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genotypes shown in Table 2, the numbers 
in brackets indicate the allele count of each 
alternate base at the variant position, in 
alphabetical order. The combined use of 
PCR and WES proved useful to resolve 
ambiguous results.

Case 3 was the only patient who tested 
negative for all 12 CYP2D6 polymorphisms 
included in the initial gene panel, as well 
as the remaining part of the CYP2D6 gene 
based on the WES results. Since this patient 
was diagnosed with both multiple sclerosis 
and TNBC breast cancer, BRCA mutation 
screening was also performed using WES. 
The result is shown in Fig. 1, indicating 
homozygosity for the microRNA 638 target 
SNP rs799917, previously implicated in 
TNBC progression via BRCA1 deregulation 
of DNA repair mechanisms.[19] The coverage 
for WES at this locus was sufficient to 
confidently identify this functional SNP as 
a true variant, as confirmed by extended 
genotyping in more than 100 cases and 
controls (>65 years) selected from our 
genomics database. 

These findings contributed to improve
ment and analytical validation of the WES 
methodology used in our laboratory and 
confirmed the value of PSGT applied across 
different assay platforms. Early successes 
using the protocol outlined in Fig. 2 include 
the following findings based on adequate 
WES coverage and/or confirmation using 
Sanger sequencing (A V Peeters and M  J 
Kotze, unpublished data): 
•	 �the detection of a novel 1-bp deletion in 

the PALB2 gene in a patient with familial 
breast cancer previously shown to have 
a BRCA1 variant of uncertain clinical 
significance;

•	 �the detection of a missed 2-bp BRCA2 
deletion in a metastatic breast cancer 
patient who also tested positive for the 
CYP2D6*4 allele;

•	 �identification of a possible polygenic 
cause for FH in an SA family that tested 
negative for high-penetrance mutations 
in four known FH genes (LDLR, APOB, 
PCSK9, LDLRAP1).

WES reports were provided to the treating 
clinicians for family genetic counselling as 
appropriate. Cascade screening is indicated 
for the protein-truncating PALB2 and 
BRCA2 family-specific mutations. Low-
density lipoprotein (LDL) cholesterol 
screening and regular monitoring are 
appropriate in cases with polygenic FH. 
Therapeutic recommendations based on 
CYP2D6 activity are provided according 
to algorithms developed by the Dutch 
Pharmacogenetics Working Group.[13] 

Ethical considerations
Careful consideration is necessary before 
genetic testing is performed, since detection 

of a genetic predisposition in one individual 
implies that other family members may have 
the same mutation. Clinical interpretation 
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Fig. 2. Testing algorithm using pathology-supported genetic testing (PSGT) as a pre-screen step to 
determine eligibility for whole exome sequencing (WES). Focus areas for pathway analysis are: (i) lipid 
and lipoprotein metabolism; (ii) DNA methylation and mismatch repair; (iii) haemostasis and inherited 
thrombophilia; (iv) haem synthesis and iron homeostasis; and (v) drug metabolism.

Fig. 1. Alignment view of whole exome sequencing reads encompassing the miR-638 target SNP 
rs799917 in the BRCA1 gene. 
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of genome scale data is complicated by the large number of gene 
variants of uncertain clinical significance uncovered by NGS, which 
may lead to unnecessary family screening. The human genome 
contains ~20  000 genes, with a considerable number of damaging 
mutations observed in healthy people that may never be expressed at 
the clinical level. Therefore, managing patient expectation regarding 
the information obtainable with WES/WGS requires knowledge of 
known gene-gene and gene-environment interaction. 

According to the written informed consent provided by patients 
referred for PSGT, WES results are provided in the following 
circumstances, unless instructed otherwise:
•	 presence of a particular disorder or family history relevant to the 

test results
•	 detection of a genetic predisposition for a treatable or preventable 

condition
•	 genetic counselling required (e.g. family screening advisable 

irrespective of treatment implications).

Patients who consider WGS/WES need to be informed beforehand 
which genes or disease pathways will be analysed, or need to agree to 
return of results based on the three above-mentioned scenarios. Given 
the fast pace of genomic discoveries and the likelihood that new health 
concerns may present themselves over time, a once-off report may not 
be sufficient. If the raw sequencing data are stored securely or provided 
to the tested individual in electronic format together  with the NGS 
report, future use will be possible for diagnostic and research purposes, 
according to the informed consent obtained at referral. A WGS/WES 
report that contains information on a limited gene panel only, without 
the option for further bioinformatics to be performed if necessary in 
future, would deny patients the full benefit of the test.

Conclusion
Referral guidelines and treatment options are well-defined for 
monogenic disorders, but for more complex disorders, PSGT applied 
in a learning healthcare system is ideally suited as a screening step 
for WES (Fig. 2). PSGT takes advantage of a founder gene effect 
in SA by combining analysis of a limited number of population-
specific mutations with functional SNPs implicated in many chronic 
diseases, based on their role in drug response and cumulative risk. 
Understanding the genetics behind the onset and development of 
cancer and other complex disorders is critical for targeted drug 
treatment, which may act on the same metabolic pathways that 
caused cellular dysfunction in the first place. For this reason, a 
combined research and service delivery platform was established to 
cope with the demand for clinical interpretation of ever-increasing 
genomic information, while striving to meet patient expectations.  
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